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Abstract

Reinforcement learning constantly deals with
hard integrals, for example when computing
expectations in policy evaluation and policy
iteration. These integrals are rarely analyti-
cally solvable and typically estimated with the
Monte Carlo method, which induces high vari-
ance in policy values and gradients. In this
work, we propose to replace Monte Carlo sam-
ples with low-discrepancy point sets. We com-
bine policy gradient methods with Random-
ized Quasi-Monte Carlo, yielding variance-
reduced formulations of policy gradient and
actor-critic algorithms. These formulations
are effective for policy evaluation and policy
improvement, as they outperform state-of-the-
art algorithms on standardized continuous
control benchmarks. Our empirical analyses
validate the intuition that replacing Monte
Carlo with Quasi-Monte Carlo yields signifi-
cantly more accurate gradient estimates.

1 INTRODUCTION

Policy gradient methods are widely used in reinforce-
ment learning for their broad applicability. They can be
applied to optimizing linear or nonlinear policies on non-
differentiable and stochastic objectives. In particular,
they handle naturally high-dimensional and continuous

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

u1

u
2

p
(u

1
)

0.
05

0.
11

0.
06

0.
11

0.
13

0.
05

0.
06

0.
19

0.
14

0.
11

p(u2)

0.08

0.08

0.09

0.06

0.11

0.14

0.08

0.16

0.06

0.14

Monte Carlo
u1

u
2

p
(u

1
)

0.
11

0.
09

0.
09

0.
11

0.
09

0.
09

0.
11

0.
09

0.
09

0.
11

p(u2)

0.09

0.09

0.11

0.11

0.09

0.09

0.09

0.11

0.09

0.11

Randomized QMC

Figure 1: Comparing MC and RQMC point sets. 64
points drawn uniformly over the space [0, 1)2 with Monte-
Carlo (MC) and randomized Quasi-Monte Carlo (RQMC).
Randomized QMC point sets minimize discrepancy thus
covering the space more evenly, as indicated by the his-
tograms of the marginals. These point sets improve the
estimation of the expectation in Equation (1), under some
smoothness assumptions.

action spaces (Benbrahim and Franklin, 1997; Peters
et al., 2003; Schulman et al., 2015; Rajeswaran et al.,
2018)

At the core of those methods is to evaluate policies and
improve them. Various formulations require to compute
some integrals over state and action spaces that are of-
ten analyticaly intractable. In practice, those integrals
are approximated and Monte Carlo (MC) sampling is
one of the popular approaches to do so (Metropolis
and Ulam, 1949). This approximation is inherently
stochastic; the exact choice and implementation of MC
variants directly impacts the quality of the estimated
policy value and policy gradients, due to the variance in
the approximation. A standard way to battle the vari-
ance is to increase the number of MC samples, thus the
computational cost as well as the need for the agents
to interact with the environments (or their simulators).
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The vanilla MC sampling, often implemented in prac-
tice as drawing from a random number generator (of a
known distribution such as uniform or Gaussian), has a
convergence rate of O

(
N−1/2

)
, where N is the number

of samples.

In this work we explore the benefit of using Randomized
Quasi-Monte Carlo (RQMC), a type of Quasi Monte
Carlo (QMC) methods as a drop-in replacement of the
vanilla sampler (Niederreiter, 1978). The key differ-
ence of QMC from the standard MC is that QMC uses
deterministic point sets to approximate the integra-
tion. Under appropriate conditions, including that the
integrated function has bounded Hardy-Krause varia-
tion, QMC can asymptotically improve the convergence
rate from O

(
N−1/2

)
to nearly O

(
N−1

)
(Papageorgiou,

2003). RQMC improves the efficiency when multiple
point sets are needed – a scenario we will encounter
when we need to compute confidence intervals of policy
values or compute policy gradients.

Figure 1 demonstrates the difference between the
vanilla MC and RQMC with 2-d point sets. The RQMC
point set covers the unit square more evenly than the
MC’s. Our empirical studies on several tasks demon-
strate clearly the utility of this property in improving
the estimation of both policy value and gradients.

Other types of methods for reducing variance in estima-
tion have also been explored: control variates such as
optimal baselines (Greensmith et al., 2001a; Lawrence
et al., 2002; Weaver and Tao, 2001a) and value functions
(Mnih et al., 2016; Schulman et al., 2016), carefully
designed optimization methods (Frostig et al., 2015; Le
Roux et al., 2012; Defazio et al., 2014; Shalev-Shwartz
and Zhang, 2013). They are orthogonal to how to ob-
tain samples for integration, and our work also explore
the possibility of combining them with RQMC to gain
further improvement in estimation quality.

Our main contribution is the introduction of the ap-
proach and the empirical studies of its performance and
analysis. Our empirical results establish that RQMC
always outperforms MC on both policy evaluation and
improvement. In particular, RQMC improves sample
complexity while reducing policy evaluation error at
an order of magnitude. Further analysis shows that
the strong performance of RQMC is due to reduced
gradient variances and better alignment with the true
gradients. RQMC is competitive with other variance
reduction techniques, and we show it can be effectively
combined with those other techniques to obtain best
performance.

The rest of the paper is organized as follows. We
introduce the basic idea behind Quasi-Monte Carlo

methods and more specifically, RQMC (§2). We show
how to apply RQMC for policy evaluation and policy
improvement (§3). In §4, we empirically study the
performance of MC and RQMC for policy evaluation
and policy improvement on continuous control problems
(e.g., Brownian motion, LQR, and MuJoCo).

2 BACKGROUND

Monte Carlo methods (MC) have been used widely
in computational statistics for estimating stochastic
integrals. Consider the problem of estimating the expec-
tation of a function f over the d-dimensional uniform
distribution Ud on the unit cube [0, 1)d. We obtain an
MC estimate by averaging the value of f for N vectors
u(i) ∈ Rd sampled from Ud:

E
u∼Ud

[f(u)] ≈ 1

N

N∑
i=1

f(u(i)). (1)

It is well-known that the mean-squared error of this
MC estimator converges at a rate of O

(
N−1/2

)
(Robert

and Casella, 2004).

Quasi Monte Carlo (QMC) The basic idea be-
hind all QMC methods is to improve the standard MC
convergence rate by replacing the random samples u(i)
with a deterministic, low discrepancy point set. Intu-
itively, we construct this low-discrepancy point set so as
to maximize the distance between each point u(i), thus
providing a more even coverage of [0, 1)d, see Figure 1
for an illustration.

QMC with such low-discrepancy point sets can reach
rates of convergence arbitrarily close to O

(
N−1

)
when

f satisfies some regularity conditions (Papageorgiou,
2003). In comparison, common variance-reduction tech-
niques in reinforcement learning (e.g., control variates
or importance sampling) only improve the constant fac-
tors in front of the O

(
N−1/2

)
rate (Glynn and Szecht-

man, 2002; Elvira and Martino, 2021).

We briefly present a concrete way – “digital nets in base
2” – to construct point sets as described by L’Ecuyer
(2018, § 2.3). Other constructions such as stratifi-
cation and lattice rules are detailed in (Niederreiter,
1992). For N = 2k points in d dimensions, we be-
gin by choosing d matrices C1, . . . , Cd ∈ [0, 1]k×k, e.g.,
the upper-triangular non-singular ones generating the
Sobol sequence (Sobol, 1976), as described by Joe and
Kuo (2008). To obtain the ith point u(i), we pro-
ceed in three steps. First, we obtain the binary vec-
tor representation of i: b(i) = [b

(i)
1 , . . . , b

(i)
k ] such that

i = b
(i)
1 + b

(i)
2 2 + · · ·+ b

(i)
k 2k−1 for i ∈ [1, N ]. Second,
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Figure 2: Randomized point set Pipeline QMC point
sets (Sobol) are generated deterministically to minimize
discrepancy, and cover the space more evenly. When several
estimates are required, it is common to randomize the point
set: first, by applying a left matrix scramble, then a digital
shift to debias the point set.

we multiply this representation with each generating
matrix Cj :

û
(i)
j = Cjb

(i) mod 2, j = 1, . . . , d,

where the modulus is applied to each element of vector
û
(i)
j ∈ Rk×1. Third, we map this base-2 representation

back to its decimal form: u(i)j =
∑k
l=1 û

(i)
j,l2
−l. The

final point u(i) = [u
(i)
1 , . . . , u

(i)
d ] is the concatenation

of all dimension values u(i)1 , . . . , u
(i)
d . Note that the

procedure is deterministic as the Sobol sequence (and
its generating matrices) is determinstic — given the
generating matrices, the QMC point set is unique.

Randomized QMC (RQMC) If we need two
or more independent realizations of the expectation
Eu [f(u)] (e.g., for confidence intervals or iterative pro-
cedures), we can randomize QMC such that the result-
ing point set retains low-discrepancy while also yielding
unbiased estimates (Owen, 1998; L’Ecuyer, 2018).

How to best randomize QMC point sets depends on the
properties of f . For example, if f is sufficiently smooth,
the convergence rate of RQMC can be improved to be
close to O

(
N−3/2

)
(Owen, 1997; Matoušek, 1998; Hick-

ernell et al., 2000). Our presentation and experiments
focus on randomization via left matrix scrambling fol-
lowed by a random digital shift, as first introduced
by Matoušek (1998). The operations are intuitively
just random linear map and shift.

With the left matrix scramble, we scramble the point set
by transforming generating matrices C1, . . . , Cd with a
set of random binary matrices L1, . . . , Ld. To that end,
we first sample d lower-triangular, non-singular, ran-
dom matrices Lj ∈ [0, 1]k×k, j = 1, . . . , d and multiply
the generating matrices Cj :

Cj ← LjCj mod 2, j = 1, . . . , d,

where the modulus is applied element-wise. We then
generate our point set as for QMC, using the newly
scrambled generating matrices C1, . . . , Cd. While
scrambling effectively and efficiently randomizes the
point set, repeating this procedure over multiple point
sets results in biased estimates (e.g., u(i)j = 0 remains
0 across all point sets). Fortunately, this bias is easily
addressed by computing the bit-wise exclusive-or of a
random binary vector vj ∈ [0, 1]k to shift each point of
the point set:

û
(i)
j ← û

(i)
j ⊕ vj , j = 1, . . . , d,

The procedure is illustrated in Figure 2; we refer the
reader to (L’Ecuyer, 2018) for a more detailed expo-
sition, and to the Supp. Material for interfaces with
popular software packages.

Policy Gradient Methods Policy gradient meth-
ods learn a parameterized policy πθ by computing the
gradient of an objective function with respect to the
policy parameters θ. This objective function is the
expected value of the policy, denoted by

V πθ = E
s,a

[Qπθ (s, a)] , (2)

and defined over the states s ∈ S and actions a ∈
A = Rdim(A) of a Markov decision process. The states
s are sampled according to the visitation frequency
while sampling the actions a from the policy. While
in principle the policy can be any distribution, our
work assumes a multivariate Gaussian, suitable for
continuous control:

a ∼ πθ(s, u) = µθ(s) + σθ(s)� F−1(u), (3)

where µθ(s) and σ2
θ(s) are the (parameterized) mean

and diagonal covariance of the Gaussian for the state
s, � denotes element-wise product, F−1 is the inverse
cumulative density function of the standard normal dis-
tribution, and u ∼ Udim(A) is a uniformly distributed
random variable. Other policy distributions can be
obtained via inverse transform sampling or with the
probability integral transform. When clear from con-
text, we omit the dependency of πθ on u and let πθ(a | s)
denote the density for taking a in state s.

The policy gradient theorem (Sutton et al., 2000) states
that the gradient of the policy value can be computed
as:

∇V πθ = E
s,a

[Qπθ (s, a)∇θ log πθ(a | s)] , (4)

where the right-hand side is obtained by applying
the score-function estimator (Miller, 1967; Rubinstein,
1969) on the policy’s action-value function Q̂πθ .
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To estimate the gradient, the agent needs to interact
with the environment by collecting trajectories of state
and actions (s1, a1, . . . , sT , aT ). Qπθ can be estimated
as expected returns:

Qπθ (sk, ak) = E
st,at

[∑T

t=k
R(st, at)

]
, (5)

where R(s, a) is the immediate reward observed when
taking action a in state s.

Another approach, used in actor-critic methods, learns
the action-value function (i.e., the critic) Q̂πθ with
πθ, for example, by minimizing the on-policy squared
Bellman error:

E
s,a,s′

[(
E
a′

[
Q̂πθ (s′, a′)

]
+R(s, a)− Q̂πθ (s, a)

)2
]
,

(6)
where the next-state action a′ ∼ πθ(· | s′) is sampled
from the current policy, and s, a, s′ from a (possibly
off-policy) replay buffer. The critic Q̂πθ is then used
in computing the policy gradient.

Algorithm 1 RQMC Policy Evaluation w/ Returns
1 from scipy.stats import Sobol
2 rqmc = Sobol(T · dim(A), scramble=True)
3 u = rqmc.random(N) # u ∈ [0, 1)N×(T ·dim(A))

4 R = 0
5 for i in 1, . . . , N:
6 env.reset()
7 for t in 1, . . . , T:

8 a
(i)
t = µθ(s

(i)
t ) + σθ(s

(i)
t )� F−1(u

(i)
t )

9 R += env.step(a(i)t )
10 return R/N

3 LEARNING AND EVALUATION
WITH RANDOMIZED
QUASI-MONTE CARLO

We now show how to use RQMC point sets for both
policy evaluation and policy improvement. We consider
both the vanilla policy gradient and actor-critic set-
tings. With the former, an (approximate) action-value
function is not available and the policy value must be es-
timated by sampling trajectories from the environment
and collecting returns. This setting is more general
than the actor-critic one, where the value functions are
approximated with parameteric functions. The actor-
critic methods tend to accelerate learning as illustrated
by several recent state-of-the-art methods (Fujimoto
et al., 2018; Haarnoja et al., 2018).

3.1 POLICY EVALUATION WITH RQMC

The goal of policy evaluation is to estimate the policy
value V πθ for a given policy πθ.

Through expected returns We estimate with

V πθ ≈ 1

N

∑N

i=1

∑T

t=1
R(s

(i)
t , a

(i)
t ), (7)

where we have N trajectories (s
(i)
1 , a

(i)
1 , . . . , s

(i)
T , a

(i)
T )

for all i.

Because the stochasticity underlying the dynamics of
the environment is typically inaccessible, we use RQMC
to sample the action sequence. Concretely, we use
RQMC to generate N points point u(i) ∈ Rd. Then,
we obtain action a(i)t = πθ(s

(i)
t , u

(i)
t ) by applying πθ to

s
(i)
t and u(i)t as in Equation (3), where u(i)t is the tth
segment of length dim(A) from u(i) (i.e., scalar entries
(t−1) ·dim(A) to t ·dim(A) in vector u(i)). Pseudocode
for this approach is listed in Algorithm 1.

Note that since we wish to evaluate the sum of im-
mediate rewards, RQMC is effectively integrating over
all actions in the trajectory and each of our N points
ought to have dimension d = dim(A) · T (for example,
dim(A) = 4 for a robotic arm with 4 degrees of freedom,
one for each of its 4 joints). If instead we were to use T
independent RQMC point sets, each with N points of
dimension dim(A), the estimator would remain unbi-
ased w.r.t. uniformity but would lose low-discrepancy
on [0, 1)d. In practice, this dependency of d on both
the action dimension dim(A) and horizon T can be an
impediment because RQMC implementations typically
limit the integration dimension1. Fortunately, this im-
pediment can be sidestepped with learned action-value
functions.

Through learned critic The above procedure can
be significantly simplified if we assume access to an
approximate (parametric) form of action-value function
Qπθ (s, a). We also assume access to a set of states used
to compute the expectation over s in the right-hand side
of Equation (7). Those states should be collected by
rolling out the evaluated policy πθ. Then, the expected
returns can be approximated with

V πθ ≈ E
sk

[
1

N

N∑
i=1

Q̂πθ
(
sk, πθ(sk, u

(i)
k )
)]

, (8)

where (u
(1)
k , . . . , u

(N)
k ) is the RQMC point set over

[0, 1)dim(A) associated with state sk. Note that be-
1E.g., the most popular implementation (Joe and Kuo,

2008) limits d ≤ 1, 110, while the latest versions of PyTorch
and TensorFlow both limit d ≤ 21, 201.
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cause Q̂πθ implicitly computes the sum of rewards over
the entire trajectory, the horizon T does not factor in
the integration dimension d = dim(A), significantly
reducing the sampling cost.

3.2 POLICY ITERATION WITH RQMC

In policy iteration, we compute the gradient of V πθ
with respect to the policy parameters θ and use them in
an iterative procedure, e.g., stochastic gradient descent,
to maximize the policy value.

When Qπθ is estimated through expected returns, pol-
icy iteration simply consists of taking the trajectories
collected during policy evaluation as in Equation (7)
and using the states s and executed actions a to com-
pute the estimate in Equation (4). Thus, the RQMC
procedure described above applies.

When the action-value functions are learned from a
parameteric estimator Q̂πθ , for example, with Equa-
tion (6), we can compute the gradients in two ways.
The first is to use the estimator as a plug-in:

∇V πθ

≈ E
s

[
1

N

N∑
i=1

Q̂πθ (s, a(i))∇ log πθ(a
(i) | s)

]
(9)

where a(i) = πθ(s, u
(i)).

Alternatively, when Q̂πθ is differentiable with respect
to the actions, for example, when Q̂πθ is instantiated
as a neural network, we can use the reparameterization
trick and view the policy as a deterministic function
and directly differentiate the action-value w.r.t. the
policy parameters θ, yielding the following estimator:

∇V πθ

≈ E
s

[
1

N

N∑
i=1

∇a(i)Q̂πθ
(
s, a(i)

)
∇θπθ(s, u(i))

]
. (10)

This type of deterministic policy gradient estimator (Sil-
ver et al., 2014) is common in recent state-of-the-art
actor-critic methods (e.g., Lillicrap et al. (2016); Fu-
jimoto et al. (2018); Haarnoja et al. (2018)), notably
because it enables off-policy learning which drastically
improves sample efficiency. We detail and provide an
implementation of soft actor-critic (SAC; Haarnoja
et al. (2018)) with RQMC in the Supp. Material.

In general, which approach to use is application-
dependent as there are scenarios where the score-
function estimator Equation (8) yields lower-variance
than the deterministic policy gradient Equation (10)
(Gal, 2016, § 3.1.2), and vice-versa (Mohamed et al.,

2019, § 8.3). Moreover, both estimators can be com-
bined (Gu et al., 2017) but it is unclear whether the
interpolation yields any benefit. In our experiments,
we focus on Equation (10) as it is the current state-of-
the-art method for continuous control.

4 EXPERIMENTS

In this section, we demonstrate the utility of RQMC
when applied to continuous control tasks. To that end,
we propose to answer the following questions:

• How effective are the RQMC policy gradient and
actor-critic formulations in ameliorating policy
evaluation (§4.1) and improvement (§4.2) on a
range of simulated continuous control tasks?

• Does RQMC effectively reduce variance and im-
prove gradient estimation (§4.3)?

• How does RQMC fare against other variance
reduction techniques, and can it complement
them (§4.4)?

Tasks We conduct our study on three sets of stan-
dardized tasks: Brownian motion, Linear-Quadratic
Regulator (LQR), as well as the popular MuJoCo
robotics suite (Todorov et al., 2012). Throughout, we
estimate Qπθ by sampling trajectories (Equation (7))
for the Brownian motion and LQR tasks, and learn a
parameterized Q̂πθ (s, a) with the soft actor-critic (SAC)
of Haarnoja et al. (2018) for the MuJoCo tasks. We
randomize point sets with the left matrix scramble and
digital shift for Brownian motion and LQR, and with
Owen’s scrambling (Owen, 1998) for MuJoCo tasks.

The Brownian motion environment – as studied in
(L’Ecuyer et al., 2008, § 4.5) – consists of a 1D point-
mass particle whose objective is to reach the origin.
At every step, an action is sampled from a Gaussian
distribution parameterized by its mean and covariance.
The reward is the Euclidean distance of the particle’s
current position to the origin, and we set the horizon
to 20 timesteps.

The LQR environment is a well-studied testbed from
the optimal control literature which provides a unified
formalism for many continuous control problems. LQR
has also been the focus of recent theoretical studies
of policy gradient methods (Fazel et al., 2018; Recht,
2019). The transition dynamics of LQR are a linear
function of the state and action, while the reward is
a quadratic function of both values. In our experi-
ments, we randomly sample transition and reward ma-
trices, with an 8-dimensional state-space, 6-dimensional
action-space, and horizon set to 20. As is standard in
the literature, we use a linear Gaussian policy. For a
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Figure 3: RQMC reduces value estimation error. RQMC is much more efficient than MC in estimating the value of
a policy on a given number of samples. As suggested by the theory, the gap between RQMC and MC grows with the
number of trajectories (in Brownian and LQR) or the number of sampled actions per state (in MuJoCo tasks, using the
learned Q̂πθ ). For MuJoCo tasks where ground-truth gradient is not available, we approximate it using 216 actions.

more thorough treatment on LQR, we refer the reader
to (Kwakernaak and Sivan, 1972).

We use the MuJoCo robotic environments available
in the standardized OpenAI Gym suite (Brockman
et al., 2016). For those experiments, we use a tanh-
Gaussian policy whose mean and diagonal covariance
are given by a 2-layer neural network. Unless speci-
fied otherwise, we use Adam (Kingma and Ba, 2015)
as the optimization algorithm, share the learning rate
among MC and RQMC, and set the horizon to 1000
timesteps. The main text presents results on Walker2d-
v3, HalfCheetah-v3, and Ant-v3, with results on
Hopper-v3 and Swimmer-v3 in the Supp. Material.

4.1 POLICY EVALUATION

Our first set of experiments compares the sample effi-
ciency of MC and RQMC. To do so, we take a fixed
policy (random policy in Brownian motion, optimal
policy for LQR and trained policy for MuJoCo) and
sample a predefined number of trajectories using either
MC or RQMC. With those trajectories, we compute
an estimated V̂ π of the expected return of the policy
and compare it against the ground-truth policy value
V π. For the Brownian motion and LQR, the ground-
truth is computed analytically and the estimation V̂ π
is computed with Equation (7) with actions generated
using MC or RQMC.

For the MuJoCo tasks, the ground-truth V π is es-
timated on 210 states for each of which we sam-
ple 216 actions with MC. The estimated V̂ π =

Es
[

1
N

∑N
i=1 Q̂

πθ (s, πθ(s, u
(i)))

]
uses a Q̂πθ -function

learned with SAC, and u(i) are sampled with either
RQMC or MC. By varying the number of samples to
estimate V̂ π we can observe the convergence rate of
different integration methods. For each method, we
repeat those experiments 30 times and report the mean
squared error |V π − V̂ π|2 in Figure 3.

For the Brownian motion, RQMC outperforms MC

0.00 0.25 0.50 0.75 1.00
Steps 1e7

102

2 × 101

3 × 101

4 × 101

6 × 101

Co
st

VPG (MC)
VPG (RQMC)

LQR

1 2 3
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Re
tu

rn
s

DDPG
TD3
SAC (MC)
SAC (RQMC)

Walker2d-v3

1 2 3
Steps 1e6

0

2500

5000

7500

10000

12500

15000

Re
tu

rn
s

DDPG
TD3
SAC (MC)
SAC (RQMC)

HalfCheetah-v3

1 2 3
Steps 1e6

0

1000

2000

3000

4000

5000

6000

Re
tu

rn
s

DDPG
TD3
SAC (MC)
SAC (RQMC)

Ant-v3

Figure 4: RQMC improves policy learning. Using
RQMC for policy learning outperforms MC on LQR and
Mujoco tasks. In particular, RQMC improves upon MC
with SAC – a state-of-the-art actor-critic method – in terms
asymptotic performance on all Mujoco tasks.

when using more than 128 trajectories. On LQR,
RQMC outperforms MC with as little as 4 trajecto-
ries. Importantly, RQMC converges significantly faster
than MC and ultimately reduces the evaluation error
by more than an order of magnitude on both of these
tasks.

For MuJoCo, RQMC significantly outperforms MC
when using as little as 16 actions per state. The gap
between MC and RQMC continues to increase with
more actions, and RQMC reaches over an order of
magnitude lower estimation error with 2048 actions per
states on all tasks.

4.2 POLICY IMPROVEMENT

To examine RQMC’s effectiveness in learning a policy,
we use the LQR and MuJoCo testbeds to optimize a ran-
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Figure 5: RQMC reduces gradient variance. On both
LQR and MuJoCo tasks, RQMC achieves lower gradient
variance than MC for the same number of trajectories. Here,
variance refers to the trace of the gradient covariance matrix.
The 95% confidence intervals are computed over 30 random
seeds.

domly initialized policy. On LQR we train with vanilla
policy gradient (VPG) using Equation (8) for 10M
environment interactions and compute the gradients
using 16 trajectories drawn with either MC or RQMC.
On MuJoCo, we train with SAC for 3M environment
interactions and draw 8 actions per state using MC or
RQMC during off-policy learning. For reference, we
also include learning curves for DDPG (Lillicrap et al.,
2016) and TD3 (Fujimoto et al., 2018). At test-time,
we do not sample actions and instead use the mean of
the policy. We use identical learning hyper-parameters
for all methods (chosen to maximize convergence rate
of MC); details are reported in the Supp. Material.

Figure 4 shows the mean convergence curves and stan-
dard errors computed over 15 different random seeds.
On LQR, RQMC converges approximately 4 times
faster than MC and also reaches lower asymptotic cost.
On MuJoCo, RQMC outperforms MC in all cases and
especially later in training where noisy gradients hinder
exploitation. Notably, swapping MC for RQMC yields
improvements comparable to those obtained when up-
grading the learning algorithm from TD3 to SAC.

4.3 IMPROVED GRADIENT
ESTIMATION

In this section, we verify the hypothesis that RQMC im-
proves learning by reducing the variance of the stochas-
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Figure 6: RQMC improves gradient alignment. For
a given number of trajectories, the gradient direction com-
puted with RQMC is better aligned than when computed
with MC. The y-axis displays the angle between ground-
truth and stochastic gradient. On LQR, the ground-truth
is computed with 48k trajectories; on MuJoCo, it is esti-
mated using 216 actions. The 95% confidence intervals are
computed over 30 random seeds.

tic gradient. To demonstrate this empirically, we take
a trained policy and compare the variance and align-
ment of its gradient when estimated with MC versus
RQMC. On LQR, we use the optimal policy obtained
analytically and estimate gradients by replacing Qπθ
with the sum of rewards in Equation (4); on MuJoCo,
we train a policy until convergence with SAC and use
Equation (10) to compute gradients. We define gra-
dient variance be the trace of the covariance matrix
Eĝ
[
(ĝ − g)>(ĝ − g)

]
, where ĝ is the gradient estimated

with a fixed number of trajectories (for LQR) or ac-
tions (for MuJoCo), and g is the ground-truth gradient
computed with 48, 000 trajectories (for LQR) or 216

actions (for MuJoCo). Similarly, we define gradient
alignment 1 − cos(ĝ, g), where cos(ĝ, g) is the cosine
similarity between estimated and ground-truth gradi-
ent. We compute 95% confidence intervals by repeating
each measurement with 30 different random seeds.

Figure 5 reports the gradient variance for MC and
RQMC. On LQR, we observe that RQMC always gives
lower gradient variance regardless of the number of
trajectories. On MuJoCo, we observe similar results
where RQMC compares favorably with as little as 4
actions, and converges at a faster rate than MC.

We observe similar results for gradient alignment in
Figure 6. On all settings, RQMC provides gradient
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Figure 7: RQMC outperforms but also comple-
ments other variance reduction techniques. Left: On
the LQR, RQMC matches or outperforms control variates
(CV) and Accelerated SGD (ASGD; Jain et al. (2018)).
Right: Combining those variance reduction techniques per-
forms best, showing their complementarity.

estimates that converge faster and are better aligned
with the ground-truth than MC.

4.4 COMBINATION WITH VARIANCE
REDUCTION TECHNIQUES

In our last experiments, we compare RQMC against
other variance reduction techniques and test whether
it can complement those existing approaches. We fo-
cus on policy improvement with VPG on LQR since
SAC already includes several advances that address
issues related to variance reduction (e.g., determinis-
tic policy gradient, Adam, off-policy learning). We
consider two alternative variance reduction techniques:
control variates (CV) and variance-reduced optimizers.
For control variates, we use the generalized advantage
estimator (Schulman et al., 2016) and learn a linear
baseline b(s) to estimate the returns V πθ when starting
from state s. This technique is ubiquituous in continu-
ous control for actor-critic methods that do not directly
learn an action-value function Qπθ (Mnih et al., 2016;
Schulman et al., 2015). For variance-reduced optimiz-
ers, we compare SGD (with momentum (Polyak, 1964))
to Accelerated SGD (ASGD; Kidambi et al. (2018);
Jain et al. (2018)), one of the first methods with prov-
able accelerated asymptotic convergence with constant
learning rate on noisy linear regression problems.

We compare MC, CV, ASGD, and RQMC in Figure 7
(left panel) and observe that all variance reduction
techniques outperform MC, with ASGD and RQMC
performing best. When combining those techniques Fig-
ure 7 (right panel), we see that adding CV and ASGD to
MC (purple-dotted curve) performs on par with ASGD
alone, suggesting that the benefits of CV are already
captured by ASGD. On the other hand, adding CV
and ASGD on top of RQMC (black-starred curve) ac-
celerates convergence, thus demonstrating that RQMC
complements these variance reduction techniques.

5 RELATED WORK

Randomized Quasi Monte-Carlo Methods
Randomized Quasi-Monte Carlo (RQMC) methods are
used throughout science and engineering to improve
estimation of intractable integrals. Previous applica-
tion domains of RQMC include finance (Glasserman,
2004; Joy et al., 1996; L’Ecuyer, 2009), computational
biology (Beentjes and Baker, 2019; Puchhammer et al.,
2021), and statistics and machine learning (Gerber and
Chopin, 2015; Buchholz et al., 2018; Liu and Owen,
2021). From a theoretical perspective, L’Ecuyer et al.
(2008) show that RQMC can reduce the variance in
Markov chain settings and they propose Array-RQMC,
an RQMC method taylored to Markov chains with long
horizons (see the Supp. Material for preliminary ex-
periments). Up to our knowledge, this work is the first
that investigates RQMC in the context of reinforcement
learning. For a more thorough review on the details
of RQMC, we refer to (Niederreiter, 1992; L’Ecuyer,
2018).

Policy Gradient and Continuous Control Pol-
icy gradient methods (Williams, 1992; Sutton et al.,
2000) are popular for continuous control problems as
they naturally handle continuous action-space problems.
A early applications of policy gradients to continuous
control type problems (including LQR) can be found
in Benbrahim and Franklin (1997) and Kimura (1998).
Subsequently, notable applications include the control
of a humanoid biped (Peters et al., 2003), dexterous
manipulation (Rajeswaran et al., 2018), quadrupedal
locomotion (Kohl and Stone, 2004), and simulated car
driving from high-dimensional inputs (Wierstra et al.,
2007). Peters and Schaal (2008) provide a review.

Specific to variance reduction, Weaver and Tao (2001b)
and Greensmith et al. (2001b) derive bounds for opti-
mal control variates (CV) on immediate and expected
returns. Those optimal baselines are often hard to esti-
mate, and more generally replaced with (approximate)
state-value functions (Mnih et al., 2016; Schulman et al.,
2016). Several works have proposed to further condi-
tion the CV on the actions (Grathwohl et al., 2018;
Liu et al., 2018), but it is unclear if this those kinds
of baselines are beneficial (Tucker et al., 2018). Ro-
moff et al. (2018) show that learning a reward function
in addition to a baseline effectively reduces gradient
variance for environment with noisy rewards. From an
optimization perspective, Papini et al. (2018) adopt
a variance-reduced optimizer (SVRG; (Johnson and
Zhang, 2013)) for policy improvement. Du et al. (2017)
propose to also use SVRG to learn a state-value func-
tion, effectively tackling a policy evaluation problem.
Peng et al. (2020) further extended this approach to
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the mini-batch setting.

RQMC is orthogonal to all the above approaches and
can be combined with them, see §4. Additionally, it
has several additional appealing properties. First, the
same approach (and code) equally handles policy evalu-
ation and learning, unlike CV or optimization methods
which require different design choices for both. Second,
RQMC is simple to implement and does not require
additional hyper-parameters. Finally, RQMC retains
all appealing factors of policy gradient, remaining uni-
versally applicable.

6 CONCLUSION

We propose to replace the MC steps in policy eval-
uation and learning with Randomized Quasi-Monte
Carlo sampling. This drop-in sampling technique is
compatible with several existing state-of-the-art algo-
rithms and has resulted in improved empirical results
in continuous control problems. In particular, we ob-
serve reduced variances in policy value estimation as
well as improved estimation of policy gradients, while
reducing the number of samples required to estimate
those quantities.

We foresee a few directions for future research. While
our work is empirical in nature, a more formal char-
acterization is needed to understand when RQMC is
guaranteed to improve policy learning and evaluation.
For example, it is well-known that RQMC can provably
underperform MC on some (contrived) cases where
smoothness requirements are not satisfied (Sloan and
Woźniakowski, 1998). Do those cases also arise in
reinforcement learning? Then, from a practical stand-
point, our RQMC experiments took approximately 1.2x
longer to run than MC ones — can we address this
slow-down with specialized software? Finally, what
role do specialized Markov chain methods (e.g., Array-
RQMC (L’Ecuyer et al., 2008)) play in reinforcement
learning? We hope the promising results presented in
this paper can help motivate those lines of inquiry.
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A EXPERIMENTAL DETAILS

This section provides additional details on the tasks, algorithms, and implementations in our experimental setups.

Our code (and other resources) is available at: http://seba1511.net/projects/qrl/

A.1 MDP BACKGROUND

All the tasks considered in our experimental section can be modelled as a Markov decision process (MDP). A
MDP can be formalized as a 4-tuple (S,A, T,R), where S and A are the spaces of states and actions, respectively.
The transition distribution T (s′ | s, a) indicates the probability of transitioning from state s ∈ S to next state
s′ ∈ S when taking action a ∈ A. In case the transition dynamics are deterministic (as in some MuJoCo tasks),
T degenerates to a Kronecker delta function. Finally, the reward function R(s, a) assigns a reward scalar r ∈ R
to each state-action pair (s, a), and defines the objective the agent is tasked to optimize. As we consider finite
horizon tasks, we omit possible discount factors and assume they are implicitly absorbed into the reward function.

A.2 BROWNIAN MOTION

For the Brownian motion experiments, the agent is a point-mass with position s ∈ R and takes actions a ∈ R.
Given current state s and action a, the next state is deterministically computed with s′ = s + 0.1 · a where
a ∼ N (µ, σ) for state-independent parameters µ ∈ R and σ ∈ R, and the immediate reward is R(s, a) = ‖s′‖2.
The initial state is always s1 = 0 and the episode terminates after T = 20 timesteps.

A.3 LINEAR-QUADRATIC REGULATOR

In LQR experiments, we use a Gaussian policy πK(at | st) = N (Kst, I6) where K ∈ R6×8 is a learnable matrix
and I6 is the identity matrix in R6. Given initial state s1 = ε0

‖ε0‖2
with ε0 ∼ N (0, I8), states and immediate

rewards at timestep t ∈ [1, . . . , 20] are computed with

st+1 = Ast +Bat + εt where εt ∼ N (0,Σs) (11)

R(st, at) = −s>t Pst − a>t Qat, (12)

where A ∈ R8×8 and B ∈ R8×6 are constructed by first sampling entries from a standard normal distribution
N (0, 1) and then normalizing the matrices to have unit Frobenius norm. Matrices P ∈ R8×8 and Q ∈ R6×6 are
random positive semi-definite and constructed to have unit condition number. The state covariance matrix Σs is
also random positive semi-definite with unit condition number.

A.4 MUJOCO

We use the standardized MuJoCo tasks (Swimmer-v3, HalfCheetah-v3, Hopper-v3, Walker2d-v3, and Ant-
v3) as described by Brockman et al. (2016). Specifically, we use the implementations in gym version 0.20.0,
mujoco-py version 1.50.1.68, and MuJoCo version 1.50.

A.5 METHODS DETAILS

This section provides more details on learning algorithms. As the VPG implementation for Brownian motion and
LQR tasks closely follows the presentation in the main text, we focus on our implementation of SAC.

The two main components of SAC are the loss functions for Q̂πθ and πθ augmented with a maximum entropy
objective. To learn Q̂πθ , SAC minimizes the on-policy squared Bellman error

LQ̂πθ = E
st,at,st+1

[(
⊥
(

E
at+1

[
Q̂πθ (st+1, at+1)− α log πθ(at+1|st+1)

]
+R(st, at)

)
− Q̂πθ (st, at)

)2
]
, (13)

http://seba1511.net/projects/qrl/
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Table 1: Hyper-parameters for LQR tasks.

Hyper-parameter Value

Learning Rate 0.0007
Momentum 0.99
Trajectories / Updates 16
CV’s γ (discount) 0.99
CV’s λ (GAE interpolation) 0.95
ASGD’s κ (long to short step ratio) 1000.0
ASGD’s ξ (statistical advantage) 10.0

Table 2: Hyper-parameters for MuJoCo tasks.

Hyper-parameter Value

Learning Rate 0.001
Entropy Regularization 0.2
Mini-batch Size 100
Minimum Replay Size 4000
Maximum Replay Size 106

MLP Depth (πθ & Q̂πθ ) 2

MLP Width (πθ & Q̂πθ ) 256

where ⊥(·) is the stop-gradient operator, and α ∈ R is the weight of the entropy bonus encouraging exploration.
In the above equation, st, at, st+1 are sampled from a replay buffer of past experience while at+1 is freshly sampled
for each evaluation of LQ̂πθ . While most implementations use a single action to estimate the inner expectation
Eat+1

over next actions a′, we found 8 actions to work as well or better with MC and performed significantly
better with RQMC.

To optimize the policy πθ, SAC maximizes the expected returns as approximated by Q̂πθ (Equation (8)). The
policy loss augmented with a max-entropy term is given by

Lπθ = −E
s

[
E
a

[
Q̂πθ (s, a)− α log πθ(a | s)

]]
, (14)

where s is sampled from a replay buffer, and a from the current policy πθ. In this case too, we found it beneficial
to use 8 actions for the expectation over actions Ea for a given state s.

For more details, please refer to the provided code implementation.

A.6 LEARNING HYPER-PARAMETERS

LQR We report hyper-parameters for the LQR experiments (including those combining other variance reduction
techniques) in Table 1.

MuJoCo We use the same hyper-parameters for all tasks and algorithms (SAC, TD3, and DDPG) on MuJoCo
tasks, given in Table 2.

A.7 CODE SNIPPETS

This section describes how to implement RQMC with popular software packages. For the Brownian motion
and LQR experiments, we use the left matrix scramble and digital shift implementation in SSJ (L’Ecuyer,
2016), and for the MuJoCo tasks we use Owen’s scrambling as implemented in PyTorch (Paszke et al., 2019).
Pseudocodes are listed in Algorithm 2 and Algorithm 3. A complete implementation of SAC with RQMC (built
on Spinning-Up (Achiam, 2018)) is included with the supplementary material.
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Algorithm 2 Left Matrix Scramble and Digital Shift in SSJ (L’Ecuyer, 2016)
1 public double[][] sample(int pow, int dim) {
2 MRG32k3a stream = new MRG32k3a();
3 int n_samples = (int)Math.pow(2, pow);
4 double[][] pointset = new double[n_samples][dim];
5
6 DigitalNetBase2 p = new SobolSequence(pow, 31, dim);
7 p.leftMatrixScramble(stream);
8 p.addRandomShift(stream);
9

10 PointSetIterator point_stream = p.iterator ();
11 for (int i = 0; i < n_samples; ++i) {
12 point_stream.nextPoint(pointset[i], dim);
13 }
14 return pointset; // Use pointset as in l. 4 - 10 of Algorithm 1
15 }

Algorithm 3 RQMC Policy Evaluation w/ Critic in PyTorch (Paszke et al., 2019)
1 from torch.quasirandom import SobolEngine
2 rqmc = SobolEngine(dim(A), scrambled=True)
3 R = 0.0
4 for k in 1, . . . ,M: # evaluation on M states
5 sk = replay_buffer.states[k]
6 rqmc._scramble()
7 rqmc.reset()
8 u(k) = rqmc.draw(N) # u(k) ∈ RN×dim(A)

9 for j in 1, . . . , N: # N actions per state

10 a
(k)
j = µθ(sk) + σθ(sk)� F−1(u

(k)
j )

11 R += Qπθ (sk, a
(k)
j )

12 return R/ (M ·N)
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B ADDITIONAL EXPERIMENTAL RESULTS

This section presents experiments that supplement the ones from the main text. In particular, it includes results
for all MuJoCo tasks (Swimmer-v3, HalfCheetah-v3, Hopper-v3, Walker2d-v3, Ant-v3), and an extension of
RQMC (Array-RQMC) specifically designed for Markov chains.

B.1 POLICY EVALUATION
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Figure 8: RQMC reduces value estimator error. RQMC is much more efficient than MC in estimating the value
of a policy on a given number of trajectories. As suggested by theory, the gap between RQMC and MC grows with the
number of trajectories. For Mujoco tasks where ground-truth gradient is not available, we approximate it using 216 actions.

Figure 8 reports value estimation error akin to Figure 3 of the main text. On the two new MuJoCo tasks, we
observe again that:
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1. RQMC significantly reduces value estimation error (by up to 2 orders of magnitude on Swimmer-v3), even
with relatively few (16) trajectories or actions (128 on Walker2d-v3, 16 on others).

2. RQMC converges more rapidly than MC in value estimation error.

B.2 POLICY IMPROVEMENT

Figure 9 complements Figure 4 from the main text, with policy improvement curves for Swimmer-v3 and
Hopper-v3. We observe:

1. RQMC improves the performance of SAC compared to MC on both Swimmer-v3 and Hopper-v3. Typically,
this improvement is on the same order as upgrading the learning algorithm from TD3 to SAC.

2. RQMC is no panacea: when SAC (MC) fails, adding RQMC does not perform much better. This is seen on
Swimmer-v3, where simpler methods (DDPG and TD3) drastically outperform SAC with MC or RQMC.
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Figure 9: RQMC improves policy learning. Using RQMC during policy learning outperforms MC on LQR and
Mujoco tasks. In particular, RQMC improves upon MC with SAC – a state-of-the-art actor-critic method – in terms
asymptotic performance on all Mujoco tasks. Unsurprisingly, RQMC alone does not suffice to fix SAC’s poor performance
on Swimmer-v3 where it is surpassed by simpler methods (i.e., DDPG, TD3).

B.3 IMPROVED GRADIENT ESTIMATION

In this subsection, we complete the gradient variance and alignement results of Figures 5 and 6 with Swimmer-v3
and Hopper-v3 in Figures 10 and 11. On both sets of figures, we observe similar trends as in the main text: both
gradient variance and alignment improve with more samples (trajectories or actions), and they typically improve
at a faster rate with RQMC.
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Figure 10: RQMC reduces gradient variance. On both LQR and MuJoCo tasks, RQMC achieves lower gradient
variance than MC for the same number of trajectories. Here, variance refers to the trace of the gradient covariance matrix.
The 95% confidence intervals are computed over 30 random seeds.

B.4 ROBUSTNESS TO INCREASED STATE TRANSITION NOISE

We now verify the robustness of RQMC under varying state transition noise. We repeat the VPG experiments
on the LQR setting while varying the scaling of the state transition covariance noise from 0.1 to 0.8. Figure 12
reports these results. As expected, increasing dynamics noise increases asymptotic cost for both MC and RQMC,
but RQMC retains its advantage over MC in terms of convergence rate.

B.5 EXTENSION TO MARKOV CHAINS WITH ARRAY-RQMC

We experiment with Array-RQMC (L’Ecuyer et al., 2008, 2009), a formulation of RQMC specifically designed for
Markov chains. Array-RQMC aims to overcome the dependency on the dimension when rolling out a policy for
long horizons T . As underlined in the main text, those challenges are twofold: the advantages of RQMC diminish
with higher integration dimension, and popular implementations don’t support dimensions higher than 21,201.

To address these issues, Array-RQMC assumes that M trajectories can be collected in parallel, which is almost
always the case with simulated environments (Petrenko et al., 2020; Freeman et al., 2021; Makoviychuk et al.,
2021). Then, Array-RQMC samples a new RQMC point set u(t)1 , . . . , u

(t)
M at every timestep t, with one point per

trajectory. Each of the M points u(t)m ∈ R|A| has dimensionality |A| thus dropping the dependency on T . In
order to effectively reduce variance, Array-RQMC has to carefully assign the current state of each trajectory
with points in the RQMC point set. This assignment is done by sorting all states at timestep t according to an
application-dependent value function. Intuitively, the goal of this sorting function is to improve approximation of
the state distribution at timestep t such that, e.g., the first point of the point set is always assigned to the state
with lowest state value. For more detailed treatments of Array-RQMC, we refer the reader to L’Ecuyer (2018)
and Puchhammer et al. (2021).
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Figure 11: RQMC improves gradient alignment. For a given number of trajectories, the gradient direction computed
with RQMC is better aligned than when computed with MC. The y-axis displays the angle between ground-truth and
stochastic gradient. On LQR, the ground-truth is computed with 48k trajectories; on MuJoCo, it is estimated using 216

actions. The 95% confidence intervals are computed over 30 random seeds.
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Figure 12: RQMC outperforms MC under various noise settings. In the LQR setting, we vary the
scaling of the state transition covariance noise from 0.1 to 0.8. Both MC and RQMC perform worse (higher cost)
with more noise, but RQMC retains a faster convergence rate than MC on all settings.
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Figure 13: Benchmarking RQMC extensions to Markov chains. Array-RQMC (ARQMC), an RQMC formulation
for Markov chains, further improves upon RQMC on the LQR for policy evaluation (left) while closely matching RQMC in
learning performance (right).

We compare Array-RQMC (ARQMC) against MC and RQMC on the LQR in Figure 13. Throughout, we assign
RQMC points to states according the state’s `1-norm, as it is a reasonable proxy for the state’s true value and
outperformed the `2 and `∞ norms in practice. For policy evaluation (left panel), ARQMC improves upon RQMC,
reaching approximately 2.5x lower value estimation error with 4, 096 trajectories. For policy learning (right panel),
ARQMC closely closely matches RQMC but does not provide additional benefit.

We hope those experiments can help motivate research on Array-RQMC in the context of reinforcement learning.
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