
Writing Distributed Applications with PyTorch

Séb Arnold

June 14, 2017

Tip: this tutorial was first published on PyTorch tutorials.

Abstract

In this short tutorial, we will be going over the distributed package of PyTorch.
We’ll see how to set up the distributed setting, use the different communication strate-
gies, and go over some the internals of the package.

1 Setup

The distributed package included in PyTorch (i.e., torch.distributed) enables researchers
and practitioners to easily parallelize their computations across processes and clusters of
machines. To do so, it leverages the messaging passing semantics allowing each process
to communicate data to any of the other processes. As opposed to the multiprocessing
(torch.multiprocessing) package, processes can use different communication backends
and are not restricted to being executed on the same machine.

In order to get started we need the ability to run multiple processes simultaneously. If
you have access to compute cluster you should check with your local sysadmin or use
your favorite coordination tool. (e.g., pdsh, clustershell, or others) For the purpose of
this tutorial, we will use a single machine and fork multiple processes using the following
template.

1

https://pytorch.org/tutorials/intermediate/dist_tuto.html
https://linux.die.net/man/1/pdsh
http://cea-hpc.github.io/clustershell/
https://slurm.schedmd.com/

"""run.py:"""

#!/usr/bin/env python

import os

import torch

import torch.distributed as dist

from torch.multiprocessing import Process

def run(rank, size):

""" Distributed function to be implemented later. """

pass

def init processes(rank, size, fn, backend='tcp'):
""" Initialize the distributed environment. """

os.environ['MASTER ADDR'] = '127.0.0.1'
os.environ['MASTER PORT'] = '29500'
dist.init process group(backend, rank=rank, world size=size)

fn(rank, size)

if name == " main ":

size = 2

processes = []

for rank in range(size):

p = Process(target=init processes, args=(rank, size, run))

p.start()

processes.append(p)

for p in processes:

p.join()

The above script spawns two processes who will each setup the distributed environment,
initialize the process group (dist.init process group), and finally execute the given run

function.

Let’s have a look at the init processes function. It ensures that every process will be able
to coordinate through a master, using the same ip address and port. Note that we used
the TCP backend, but we could have used MPI or Gloo instead. (c.f. Section 5.1) We will
go over the magic happening in dist.init process group at the end of this tutorial, but
it essentially allows processes to communicate with each other by sharing their locations.

2 Point-to-Point Communication

Send and Recv

A transfer of data from one process to another is called a point-to-point communication.
These are achieved through the send and recv functions or their immediate counter-parts,
isend and irecv.

2

https://en.wikipedia.org/wiki/Message_Passing_Interface
http://github.com/facebookincubator/gloo

"""Blocking point-to-point communication."""

def run(rank, size):

tensor = torch.zeros(1)

if rank == 0:

tensor += 1

Send the tensor to process 1

dist.send(tensor=tensor, dst=1)

else:

Receive tensor from process 0

dist.recv(tensor=tensor, src=0)

print('Rank ', rank, ' has data ', tensor[0])

In the above example, both processes start with a zero tensor, then process 0 increments
the tensor and sends it to process 1 so that they both end up with 1.0. Notice that process
1 needs to allocate memory in order to store the data it will receive.

Also notice that send/recv are blocking: both processes stop until the communication
is completed. On the other hand immediates are non-blocking; the script continues its
execution and the methods return a DistributedRequest object upon which we can choose
to wait().

"""Non-blocking point-to-point communication."""

def run(rank, size):

tensor = torch.zeros(1)

req = None

if rank == 0:

tensor += 1

Send the tensor to process 1

req = dist.isend(tensor=tensor, dst=1)

print('Rank 0 started sending')
else:

Receive tensor from process 0

req = dist.irecv(tensor=tensor, src=0)

print('Rank 1 started receiving')
print('Rank 1 has data ', tensor[0])

req.wait()

print('Rank ', rank, ' has data ', tensor[0])

Running the above function might result in process 1 still having 0.0 while having already
started receiving. However, after req.wait() has been executed we are guaranteed that
the communication took place, and that the value stored in tensor[0] is 1.0.

Point-to-point communication is useful when we want a fine-grained control over the com-
munication of our processes. They can be used to implement fancy algorithms, such as the
one used in Baidu’s DeepSpeech or Facebook’s large-scale experiments.(c.f. Section 4.1)

3

https://github.com/baidu-research/baidu-allreduce
https://research.fb.com/publications/imagenet1kin1h/

3 Collective Communication

Broadcast

AllGather

Reduce

AllReduce

Scatter

Gather

As opposed to point-to-point communcation, collectives allow for communication patterns
across all processes in a group. A group is a subset of all our processes. To create a
group, we can pass a list of ranks to dist.new group(group). By default, collectives are
executed on the all processes, also known as the world. For example, in order to obtain the
sum of all tensors at all processes, we can use the dist.all reduce(tensor, op, group)

collective.

""" All-Reduce example."""

def run(rank, size):

""" Simple point-to-point communication. """

group = dist.new group([0, 1])

tensor = torch.ones(1)

dist.all reduce(tensor, op=dist.reduce op.SUM, group=group)

print('Rank ', rank, ' has data ', tensor[0])

Since we want the sum of all tensors in the group, we use dist.reduce op.SUM as the
reduce operator. Generally speaking, any commutative mathematical operation can be
used as an operator. Out-of-the-box, PyTorch comes with 4 such operators, all working at
the element-wise level:

• dist.reduce op.SUM,
• dist.reduce op.PRODUCT,
• dist.reduce op.MAX,
• dist.reduce op.MIN.

In addition to dist.all reduce(tensor, op, group), there are a total of 6 collectives
currently implemented in PyTorch.

4

• dist.broadcast(tensor, src, group): Copies tensor from src to all other pro-
cesses.

• dist.reduce(tensor, dst, op, group): Applies op to all tensor and stores the
result in dst.

• dist.all reduce(tensor, op, group): Same as reduce, but the result is stored in
all processes.

• dist.scatter(tensor, src, scatter list, group): Copies the ith tensor scatter list[i]

to the ith process.
• dist.gather(tensor, dst, gather list, group): Copies tensor from all pro-

cesses in dst.
• dist.all gather(tensor list, tensor, group): Copies tensor from all processes

to tensor list, on all processes.

4 Distributed Training

Note: You can find the example script of this section in this GitHub repository.

Now that we understand how the distributed module works, let us write something useful
with it. Our goal will be to replicate the functionality of DistributedDataParallel. Of
course, this will be a didactic example and in a real-world situtation you should use the
official, well-tested and well-optimized version linked above.

Quite simply we want to implement a distributed version of stochastic gradient descent.
Our script will let all processes compute the gradients of their model on their batch of
data and then average their gradients. In order to ensure similar convergence results when
changing the number of processes, we will first have to partition our dataset. (You could
also use tnt.dataset.SplitDataset, instead of the snippet below.)

5

https://github.com/seba-1511/dist_tuto.pth/
http://pytorch.org/docs/master/nn.html#torch.nn.parallel.DistributedDataParallel
https://github.com/pytorch/tnt/blob/master/torchnet/dataset/splitdataset.py#L4

""" Dataset partitioning helper """

class Partition(object):

def init (self, data, index):

self.data = data

self.index = index

def len (self):

return len(self.index)

def getitem (self, index):

data idx = self.index[index]

return self.data[data idx]

class DataPartitioner(object):

def init (self, data, sizes=[0.7, 0.2, 0.1], seed=1234):

self.data = data

self.partitions = []

rng = Random()

rng.seed(seed)

data len = len(data)

indexes = [x for x in range(0, data len)]

rng.shuffle(indexes)

for frac in sizes:

part len = int(frac * data len)

self.partitions.append(indexes[0:part len])

indexes = indexes[part len:]

def use(self, partition):

return Partition(self.data, self.partitions[partition])

With the above snippet, we can now simply partition any dataset using the following few
lines:

""" Partitioning MNIST """

def partition dataset():

dataset = datasets.MNIST('./data', train=True, download=True,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

]))

size = dist.get world size()

bsz = 128 / float(size)

partition sizes = [1.0 / size for in range(size)]

partition = DataPartitioner(dataset, partition sizes)

partition = partition.use(dist.get rank())

train set = torch.utils.data.DataLoader(partition,

batch size=bsz,

shuffle=True)

return train set, bsz

Assuming we have 2 replicas, then each process will have a train set of 60000 / 2 = 30000

6

samples. We also divide the batch size by the number of replicas in order to maintain the
overall batch size of 128.

We can now write our usual forward-backward-optimize training code, and add a function
call to average the gradients of our models. (The following is largely inspired from the
official PyTorch MNIST example.)

""" Distributed Synchronous SGD Example """

def run(rank, size):

torch.manual seed(1234)

train set, bsz = partition dataset()

model = Net()

optimizer = optim.SGD(model.parameters(),

lr=0.01, momentum=0.5)

num batches = ceil(len(train set.dataset) / float(bsz))

for epoch in range(10):

epoch loss = 0.0

for data, target in train set:

data, target = Variable(data), Variable(target)

optimizer.zero grad()

output = model(data)

loss = F.nll loss(output, target)

epoch loss += loss.data[0]

loss.backward()

average gradients(model)

optimizer.step()

print('Rank ', dist.get rank(), ', epoch ',
epoch, ': ', epoch loss / num batches)

It remains to implement the average gradients(model) function, which simply takes in
a model and averages its gradients across the whole world.

""" Gradient averaging. """

def average gradients(model):

size = float(dist.get world size())

for param in model.parameters():

dist.all reduce(param.grad.data, op=dist.reduce op.SUM)

param.grad.data /= size

Et voilà ! We successfully implemented distributed synchronous SGD and could train any
model on a large computer cluster.

Note: While the last sentence is technically true, there are a lot more tricks required to
implement a production-level implementation of synchronous SGD. Again, use what has
been tested and optimized.

7

https://github.com/pytorch/examples/blob/master/mnist/main.py
http://seba-1511.github.io/dist_blog
http://pytorch.org/docs/master/nn.html#torch.nn.parallel.DistributedDataParallel
http://pytorch.org/docs/master/nn.html#torch.nn.parallel.DistributedDataParallel

4.1 Our Own Ring-Allreduce

As an additional challenge, imagine that we wanted to implement DeepSpeech’s efficient
ring allreduce. This is fairly easily implemented using point-to-point collectives.

""" Implementation of a ring-reduce with addition. """

def allreduce(send, recv):

rank = dist.get rank()

size = dist.get world size()

send buff = th.zeros(send.size())

recv buff = th.zeros(send.size())

accum = th.zeros(send.size())

accum[:] = send[:]

left = ((rank - 1) + size) % size

right = (rank + 1) % size

for i in range(size - 1):

if i % 2 == 0:

Send send buff

send req = dist.isend(send buff, right)

dist.recv(recv buff, left)

accum[:] += recv[:]

else:

Send recv buff

send req = dist.isend(recv buff, right)

dist.recv(send buff, left)

accum[:] += send[:]

send req.wait()

recv[:] = accum[:]

In the above script, the allreduce(send, recv) function has a slightly different signature
than the ones in PyTorch. It takes a recv tensor and will store the sum of all send tensors
in it. As an exercise left to the reader, there is still one difference between our version and
the one in DeepSpeech: their implementation divide the gradient tensor into chunks, so as
to optimially utilize the communication bandwidth. (Hint: toch.chunk)

5 Advanced Topics

We are now ready to discover some of the more advanced functionalities of torch.distributed.
Since there is a lot to cover, this section is divided into two subsections:

1. Communication Backends: where we learn how to use MPI and Gloo for GPU-GPU
communication.

2. Initialization Methods: where we understand how to best setup the initial coordina-
tion phase in dist.init process group().

8

http://pytorch.org/docs/master/torch.html#torch.chunk

5.1 Communication Backends

One of the most elegant aspects of torch.distributed is its ability to abstract and build
on top of different backends. As mentioned before, there are currently three backends
implemented in PyTorch: TCP, MPI, and Gloo. They each have different specifications and
tradeoffs, depending on the desired use-case. A comparative table of supported functions
can be found here.

5.1.1 TCP Backend

So far we have made extensive usage of the TCP backend. It is quite handy as a devel-
opment platform, as it is guaranteed to work on most machines and operating systems.
It also supports all point-to-point and collective functions on CPU. However, there is no
support for GPUs and its communication routines are not as optimized as the MPI one.

5.1.2 Gloo Backend

The Gloo backend provides an optimized implementation of collective communication pro-
cedures, both for CPUs and GPUs. It particularly shines on GPUs as it can perform
communication without transferring data to the CPU’s memory using GPUDirect. It is
also capable of using NCCL to perform fast intra-node communication and implements its
own algorithms for inter-node routines.

Since version 0.2.0, the Gloo backend is automatically included with the pre-compiled
binaries of PyTorch. As you have surely noticed, our distributed SGD example does not
work if you put model on the GPU. Let’s fix it by first replacing backend='gloo' in
init processes(rank, size, fn, backend='tcp'). At this point, the script will still
run on CPU but uses the Gloo backend behind the scenes. In order to use multiple GPUs,
let us also do the following modifications:

0. init processes(rank, size, fn, backend='tcp')→ init processes(rank, size,

fn, backend='gloo')
1. model = Net() → model = Net().cuda(rank)

2. data, target = Variable(data), Variable(target)→ data, target = Variable(data.cuda(rank)),

Variable(target.cuda(rank))

With the above modifications, our model is now training on two GPUs and you can monitor
their utilization with watch nvidia-smi.

9

http://pytorch.org/docs/master/distributed.html#module-torch.distributed
https://github.com/facebookincubator/gloo
https://developer.nvidia.com/gpudirect
https://github.com/NVIDIA/nccl
https://github.com/facebookincubator/gloo/blob/master/docs/algorithms.md

5.1.3 MPI Backend

The Message Passing Interface (MPI) is a standardized tool from the field of high-performance
computing. It allows to do point-to-point and collective communications and was the main
inspiration for the API of torch.distributed. Several implementations of MPI exist
(e.g. Open-MPI, MVAPICH2, Intel MPI) each optimized for different purposes. The ad-
vantage of using the MPI backend lies in MPI’s wide availability - and high-level of opti-
mization - on large computer clusters. Some recent implementations are also able to take
advantage of CUDA IPC and GPU Direct technologies in order to avoid memory copies
through the CPU.

Unfortunately, PyTorch’s binaries can not include an MPI implementation and we’ll have to
recompile it by hand. Fortunately, this process is fairly simple given that upon compilation,
PyTorch will look by itself for an available MPI implementation. The following steps install
the MPI backend, by installing PyTorch from sources.

1. Create and activate your Anaconda environment, install all the pre-requisites follow-
ing the guide, but do not run python setup.py install yet.

2. Choose and install your favorite MPI implementation. Note that enabling CUDA-
aware MPI might require some additional steps. In our case, we’ll stick to Open-MPI
without GPU support: conda install -c conda-forge openmpi

3. Now, go to your cloned PyTorch repo and execute python setup.py install.

In order to test our newly installed backend, a few modifications are required.

1. Replace the content under if name == ' main ': with init processes(0,

0, run, backend='mpi').
2. Run mpirun -n 4 python myscript.py.

The reason for these changes is that MPI needs to create its own environment before spawn-
ing the processes. MPI will also spawn its own processes and perform the handshake de-
scribed in Initialization Methods, making the rankand size arguments of init process group

superfluous. This is actually quite powerful as you can pass additional arguments to mpirun

in order to tailor computational resources for each process. (Things like number of cores
per process, hand-assigning machines to specific ranks, and some more) Doing so, you
should obtain the same familiar output as with the other communication backends.

10

https://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/
https://software.intel.com/en-us/intel-mpi-library
https://developer.nvidia.com/mvapich
https://developer.nvidia.com/ibm-spectrum-mpi
http://www.open-mpi.org/
https://github.com/pytorch/pytorch#from-source
https://github.com/pytorch/pytorch#from-source
https://www.open-mpi.org/faq/?category=running#mpirun-hostfile

5.2 Initialization Methods

To finish this tutorial, let’s talk about the very first function we called: dist.init process group(backend,

init method). In particular, we will go over the different initialization methods which are
responsible for the initial coordination step between each process. Those methods allow you
to define how this coordination is done. Depending on your hardware setup, one of these
methods should be naturally more suitable than the others. In addition to the following
sections, you should also have a look at the official documentation.

Before diving into the initialization methods, let’s have a quick look at what happens
behind init process group from the C/C++ perspective.

1. First, the arguments are parsed and validated.
2. The backend is resolved via the name2channel.at() function. A Channel class is

returned, and will be used to perform the data transmission.
3. The GIL is dropped, and THDProcessGroupInit() is called. This instantiates the

channel and adds the address of the master node.
4. The process with rank 0 will execute the master procedure, while all other ranks will

be workers.
5. The master

a. Creates sockets for all workers.
b. Waits for all workers to connect.
c. Sends them information about the location of the other processes.

6. Each worker

a. Creates a socket to the master.
b. Sends their own location information.
c. Receives information about the other workers.
d. Opens a socket and handshakes with all other workers.

7. The initialization is done, and everyone is connected to everyone.

5.2.1 Environment Variable

We have been using the environment variable initialization method throughout this tutorial.
By setting the following four environment variables on all machines, all processes will be
able to properly connect to the master, obtain information about the other processes, and
finally handshake with them.

11

http://pytorch.org/docs/master/distributed.html#initialization

• MASTER PORT: A free port on the machine that will host the process with rank 0.
• MASTER ADDR: IP address of the machine that will host the process with rank 0.
• WORLD SIZE: The total number of processes, so that the master knows how many

workers to wait for.
• RANK: Rank of each process, so they will know whether it is the master of a worker.

5.2.2 Shared File System

The shared filesystem requires all processes to have access to a shared file system, and will
coordinate them through a shared file. This means that each process will open the file,
write its information, and wait until everybody did so. After what all required information
will be readily available to all processes. In order to avoid race conditions, the file system
must support locking through fcntl. Note that you can specify ranks manually or let the
processes figure it out by themselves. Be defining a unique groupname per job you can use
the same file path for multiple jobs and safely avoid collision.

dist.init process group(init method='file:///mnt/nfs/sharedfile', world size=4,

group name='mygroup')

5.2.3 TCP Init & Multicast

Initializing via TCP can be achieved in two different ways:

1. By providing the IP address of the process with rank 0 and the world size.
2. By providing any valid IP multicast address and the world size.

In the first case, all workers will be able to connect to the process with rank 0 and follow
the procedure described above.

dist.init process group(init method='tcp://10.1.1.20:23456', rank=args.rank, world size=4)

In the second case, the multicast address specifies the group of nodes who might potentially
be active and the coordination can be handled by allowing each process to have an initial
handshake before following the above procedure. In addition TCP multicast initialization
also supports a group name argument (as with the shared file method) allowing multiple
jobs to be scheduled on the same cluster.

12

http://man7.org/linux/man-pages/man2/fcntl.2.html
https://en.wikipedia.org/wiki/Multicast_address

dist.init process group(init method='tcp://[ff15:1e18:5d4c:4cf0:d02d:b659:53ba:b0a7]:23456',
world size=4)

Acknowledgements

I’d like to thank the PyTorch developers for doing such a good job on their implementation,
documentation, and tests. When the code was unclear, I could always count on the docs
or the tests to find an answer. In particular, I’d like to thank Soumith Chintala, Adam
Paszke, and Natalia Gimelshein for providing insightful comments and answering questions
on early drafts.

13

http://pytorch.org/docs/master/distributed.html
https://github.com/pytorch/pytorch/blob/master/test/test_distributed.py

	Setup
	Point-to-Point Communication
	Collective Communication
	Distributed Training
	Our Own Ring-Allreduce

	Advanced Topics
	Communication Backends
	TCP Backend
	Gloo Backend
	MPI Backend

	Initialization Methods
	Environment Variable
	Shared File System
	TCP Init & Multicast

