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Contributions
•We introduce a simple method to reduce the variance of gradient estimates,
which can be plugged into most existing algorithms.

• For the quadratic case, we show that our estimator converges at the rate ofO(1t).
• For non-quadratics, we use a forgetting mechanism to discard stale gradients.
•We empirically benchmark our method on many machine learning settings,
and demonstrate its competitivity.

•We provide open-source implementations in PyTorch and TensorFlow.

Problem Formulation
We wish to solve the following minimization problem:

✓⇤ = argmin
✓

E
x⇠p

[f (✓, x)] , (1)

where
•x are data samples,
• ✓ are parameter iterates, and
•we have access to the derivative g(✓, x) = @f (✓,x)

@✓ of f (✓, x) with respect to ✓.
A popular method is to use stochastic gradient descent (SGD) or heavyball (HB):

wt =

HBz }| {
µwt�1 � ↵g(✓t, xt)| {z }

SGD

(2)

✓t+1 = ✓t + wt (3)

Problem SGD/HBwith constant↵ are not convergent. Instead, they bounce around
a ball of noise.

Goal We would like to build an estimate of g(✓) = Ex⇠p[g(✓, x)], which would en-
sure convergence.

Method
Overall Idea Instead of computing the stochastic gradient at ✓t, compute it at an-
other point ✓̂t such that the convex combination of the new gradient and the past
estimate vt reduces variance:

vt+1 = �tvt + (1� �t)g(✓̂t, xt) ⇡ E
x⇠p

[g(✓t, x)] . (4)

Solution On quadratics, this is achieved if we let:

�t =
t

t + 1
and ✓̂t = ✓t +

�t
1� �t

(✓t � ✓t�1). (5)

Solution 2 For non-quadratics we can forget stale gradients by using ATA [1]:
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c(t� 1)
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!
, c > 1. (6)

Algorithm 1 Heavyball-IGT
procedure H���������IGT(Stepsize ↵, Momentum µ, Initial parameters ✓0)

v0 g(✓0, x0) , w0 �↵v0 , ✓1 ✓0 + w0
for t = 1, . . . , T � 1 do

�t 
t

t+1 . Or use Eq. 6 for ITA.
vt �tvt�1 + (1� �t)g

⇣
✓t +

�t
1��t

(✓t � ✓t�1), xt
⌘

. Compute IGT gradient.
wt µwt�1 � ↵vt . Plug into heavyball.
✓t+1 ✓t + wt . Update iterates.

return ✓T

Theory

Assumption
Let f be a quadratic function with positive de�nite Hessian H with largest eigen-
value L and condition number  and if the stochastic gradients satisfy: g(✓, x) =
g(✓) + ✏ with ✏ a random i.i.d. noise with covariance bounded by BI .

Theorem 1
With stepsize ↵ = 1/L, Eq. 5 leads to iterates ✓t satisfying

E[k✓t � ✓⇤k2] 

✓
1�

1



◆2t

k✓0 � ✓⇤k2 +
d↵2B⌫̄20

t
,

with ⌫ = (2 + 2 log ) for every t > 2.

Theorem 2
When plugging vt+1 in HB (c.f. Heavyball-IGT), there exist constant ↵ > 0, µ > 0
such that kE[✓t � ✓⇤]k2 converges to zero linearly, and the variance is Õ(1/t).

Try it yourself !
PyTorch Implementation available at bit.ly/369wK18

opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
opt = IGTransporter(model.parameters(), opt)
# or
opt = ITA(model.parameters(), opt, interval=2.0)

TensorFlow Implementation available at bit.ly/2WgPNBY
optimizer = exp_igt_optimizer.ExpIgtOptimizer(

learning_rate=0.01,
tail_fraction=2.0,
optimizer=’mom’ # or ’gd’, ’adam’

)

More information available at: seba1511.net/project/igt
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