Reducing the variance in online optimization by transporting past gradients

Sébastien M. R. Arnold

USC

Contributions

- We introduce a **simple method** to reduce the variance of g which can be **plugged into most existing algorithms**.
- For the quadratic case, we show that our estimator converges at the rate of $\mathcal{O}(\frac{1}{t})$.
- For non-quadratics, we use a **forgetting mechanism** to discard stale gradients.
- We empirically **benchmark our method** on many machine learning settings, and demonstrate its competitivity.
- We provide **open-source implementations** in PyTorch and TensorFlow.

Problem Formulation

We wish to solve the following minimization problem:

$$\theta^* = \arg\min_{\theta} \mathop{\mathbb{E}}_{x \sim p} [f(\theta, x)] \;,$$

where

- x are data samples,
- θ are parameter iterates, and
- we have access to the derivative $g(\theta, x) = \frac{\partial f(\theta, x)}{\partial \theta}$ of $f(\theta, x)$ with respect to θ .
- A popular method is to use stochastic gradient descent (SGD) or heavyball (HB):

$$w_{t} = \overbrace{\mu w_{t-1} - \alpha g(\theta_{t}, x_{t})}^{\text{HB}}$$

$$w_{t} = \overbrace{\mu w_{t-1} - \alpha g(\theta_{t}, x_{t})}^{\text{HB}}$$

$$\underset{\text{SGD}}{\text{SGD}}$$

$$\theta_{t+1} = \theta_{t} + w_{t}$$

Problem SGD/HB with constant α are not convergent. Instead, they bounce around a ball of noise.

Goal We would like to build an estimate of $g(\theta) = \mathbb{E}_{x \sim p}[g(\theta, x)]$, which would ensure convergence.

Method

Overall Idea Instead of computing the stochastic gradient at θ_t , compute it at another point θ_t such that the convex combination of the new gradient and the past estimate v_t reduces variance:

$$v_{t+1} = \gamma_t v_t + (1 - \gamma_t) g(\hat{\theta}_t, x_t) \approx \mathop{\mathbb{E}}_{x \sim p} \left[g(\theta_t, x) \right]$$

Solution On quadratics, this is achieved if we let:

$$\gamma_t = \frac{t}{t+1}$$
 and $\hat{\theta}_t = \theta_t + \frac{\gamma_t}{1-\gamma_t}(\theta_t - \theta_{t-1})$

Solution 2 For non-quadratics we can *forget* stale gradients by using ATA [1]:

$$\gamma_t = \frac{c(t-1)}{1+c(t-1)} \left(1 - \frac{1}{c} \sqrt{\frac{1-c}{t(t-1)}} \right), \qquad c > 0$$

Pierre-Antoine Manzagol

Google Brain

Reza Babanezhad

UBC

gradient	estimates,
grauten	connaces,

Algorithm 1 Heavyball-IGT **procedure** HEAVYBALL-IGT(Stepsize α , Momentum μ , Initial parameters θ_0) $v_0 \leftarrow g(\theta_0, x_0)$, $w_0 \leftarrow -\alpha v_0$, $\theta_1 \leftarrow \theta_0 + w_0$ for t = 1, ..., T - 1 do $\gamma_t \leftarrow \frac{t}{t+1}$ $v_t \leftarrow \gamma_t v_{t-1} + (1 - \gamma_t) g\left(\theta_t + \frac{\gamma_t}{1 - \gamma_t} (\theta_t - \theta_{t-1}), x_t\right)$ $w_t \leftarrow \mu w_{t-1} - \alpha v_t$ $\theta_{t+1} \leftarrow \theta_t + w_t$ return θ_T

Theory

Assumption

(1)

(2)

(3)

(4)

(5)

 $\cdot > 1.$ (6) Let f be a quadratic function with positive definite Hessian H with largest eigenvalue L and condition number κ and if the stochastic gradients satisfy: $g(\theta, x) = 0$ $g(\theta) + \epsilon$ with ϵ a random i.i.d. noise with covariance bounded by BI.

Theorem 1

With stepsize $\alpha = 1/L$, Eq. 5 leads to iterates θ_t satisfying

 $E[\|\theta_t - \theta^*\|^2] \le \left(1 - \frac{1}{\kappa}\right)^{2t} \|\theta_0 - \theta^*\|^2$

with $\nu = (2 + 2 \log \kappa) \kappa$ for every $t > 2\kappa$.

Theorem 2

When plugging v_{t+1} in HB (c.f. Heavyball-IGT), there exist constant $\alpha > 0$, $\mu > 0$ such that $||E[\theta_t - \theta^*]||^2$ converges to zero linearly, and the variance is O(1/t).

Try it yourself !

PyTorch Implementation available at bit.ly/369wK18

opt = IGTransporter(model.parameters(), opt)

opt = ITA(model.parameters(), opt, interval=2.0)

TensorFlow Implementation available at **bit.ly**/2WgPNBY

```
learning_rate=0.01
tail fraction=2.0.
```

More information available at: seba1511.net/project/igt

References

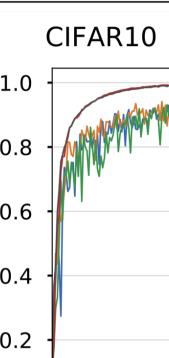
- 1. Nicolas Le Roux. 2019. "Anytime Tail Averaging." 2. Jian Zhang and Ioannis Mitliagkas. 2017. "YellowFin and the Art of Momentum Tuning."
- 3. Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. 2017. "Accelerating Stochastic Gradient Descent."

Ioannis Mitliagkas

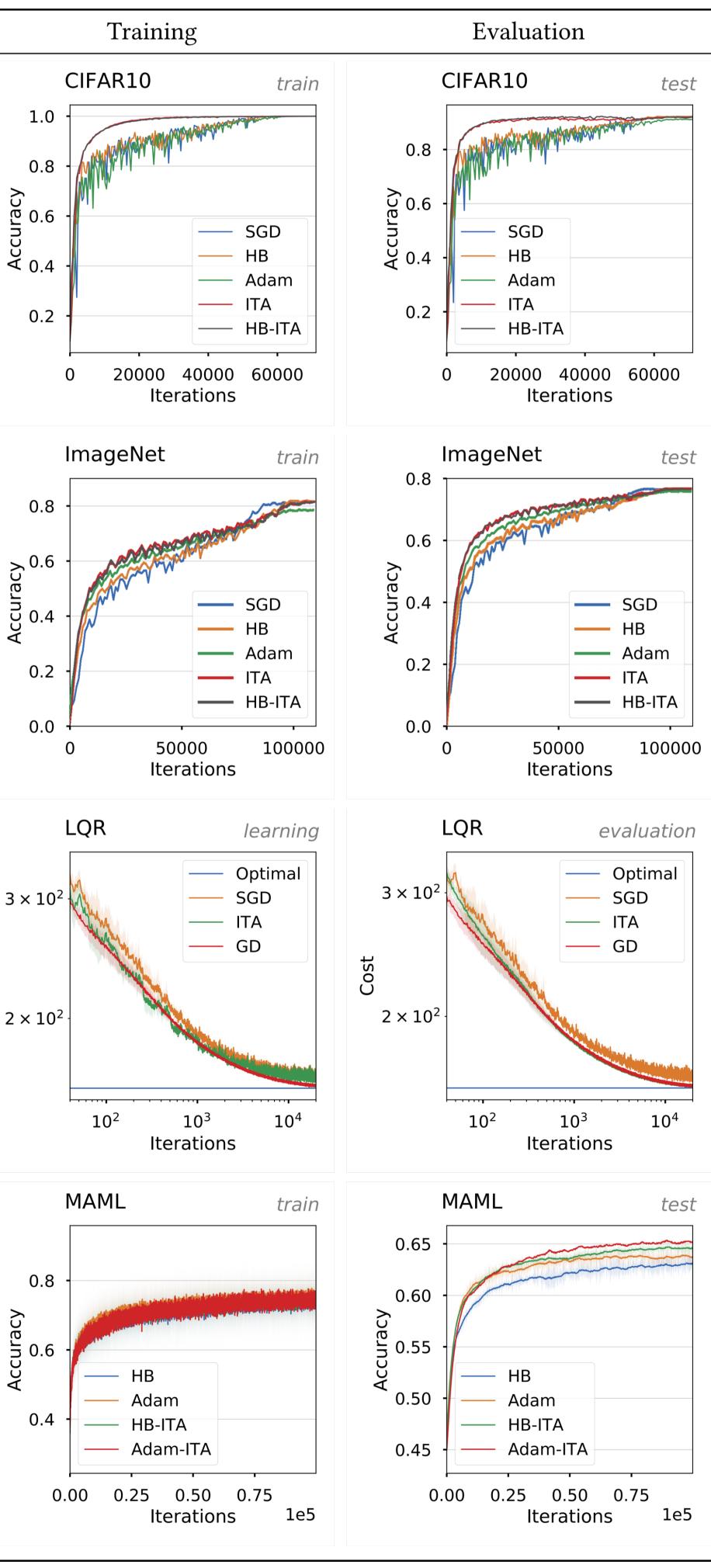
Mila - U. Montreal

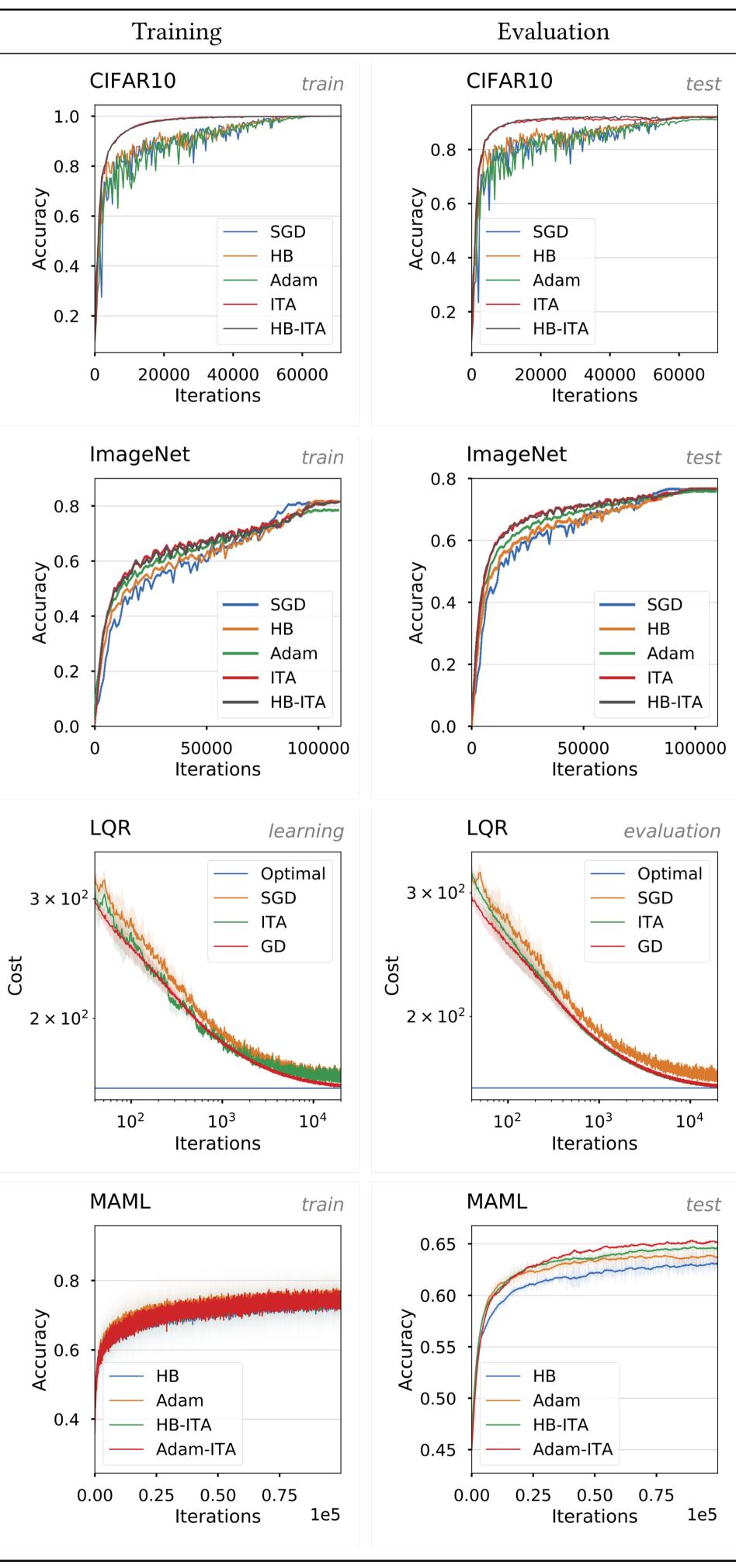
Nicolas Le Roux

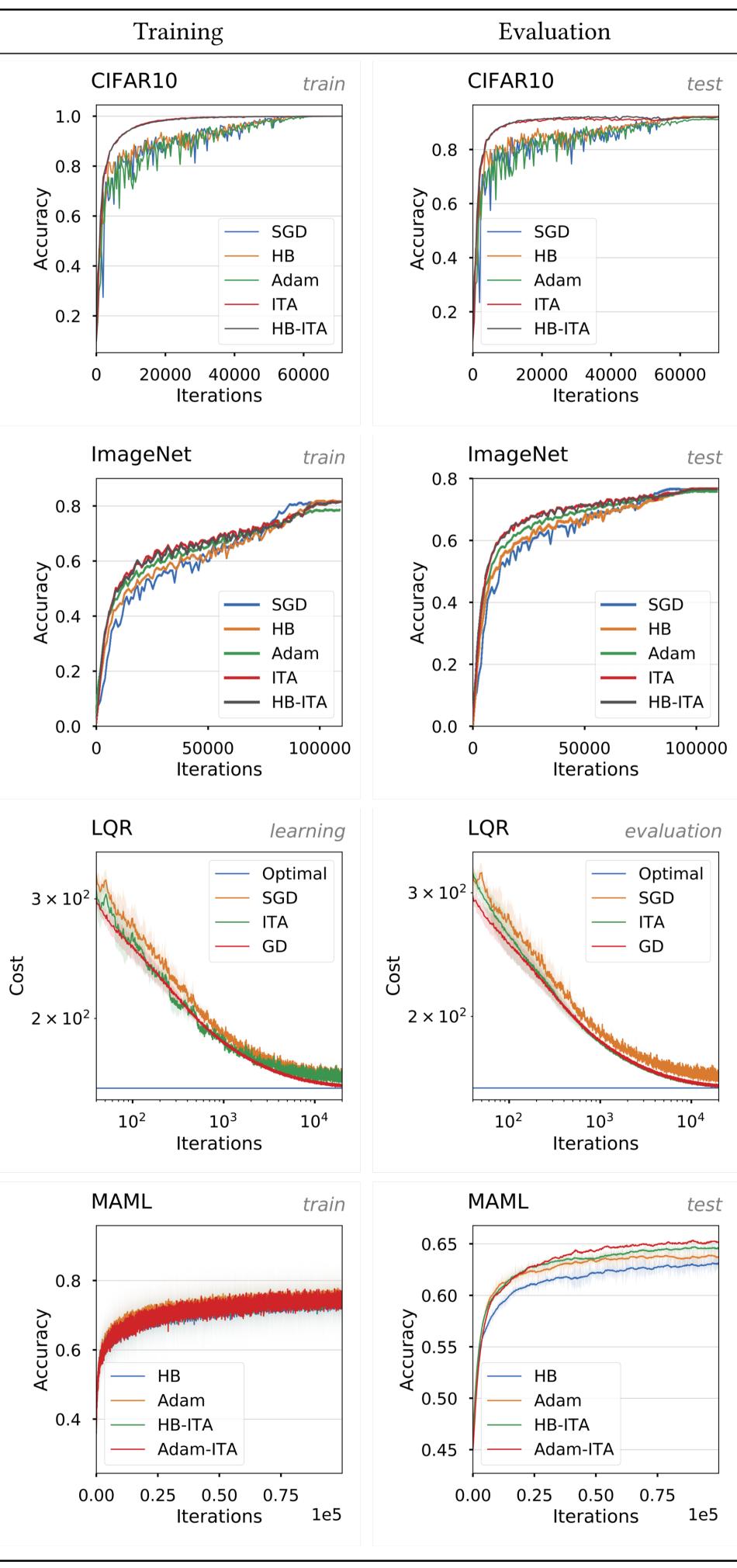
⊳ Or use Eq. 6 for ITA. ▷ Compute IGT gradient. ▷ Plug into heavyball. \triangleright Update iterates.



$$- heta^* \|^2 + rac{dlpha^2 B ar{
u}_0^2}{t}$$







Google Brain, Mila - McGill

