When MAML Can Adapt Fast And How to Assist When It Cannot

Séb Arnold — seb.arnold@usc.edu

Shariq Iqbal — shariqiq@usc.edu

Fei Sha — fsha@google.com

More information: sebarnold.net/projects/kfo

Summary

We take a closer look at Model Agnostic Meta-Learning (MAML) and show that it requires depth — shallow models fail because they lack parameters to shape the gradients during fast adaptation.

- Surprisingly, MAML fails to adapt on very simple tasks even with a model expressive enough to solve them perfectly; but, an over-parameterized model succeeds.
- Our analysis shows that this is because upper layers meta-learn update functions for the bottom layers.
- We propose three solutions to combat this issue:
 - 1. Using deeper non-linear models,
 - 2. Adding extra linear (collapsable) layers at the end of the model,
 - 3. Training with KFO (Kronecker-Factored Optimizer), a new metaoptimizer which scales to large deep networks.
- Empirically, we compare all three approaches and conclude that adding linear layers is a simple solution that almost matches meta-optimizers, while also enabling control of the model size post-adaptation.

MAML: Model Agnostic Meta-Learning

The MAML [1] objective is simply expressed as:

$$\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)) \right]$$

where:

- $\theta \triangleq$ the parameters to be learned,
- $\tau \triangleq$ a task index,
- $\mathcal{L}\tau \triangleq$ the loss associated with a task.

Intuition: MAML tries to meta-learn parameters that can be quickly adapt to any task from your training distribution.

References

- 1. "Model Agnostic Meta-Learning", Finn et al., ICML 2017.
- 2. "Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML", Raghu et al., ICLR 2020.

Failure Mode

MAML fails to meta-learn with shallow models, even though they have sufficient capacity to solve all tasks.

However, meta-learning succeeds when overparameterizing the models (with linear layers) without changing their original capacity.

Why?

Insights

- Theoretical analysis on 1D shallow and deep models shows that:
 - deep models are required for meta-learning, because
 - the upper layers of the model facilitate (meta-)optimization.
- We can interpret those upper layers as "meta-optimizers that work from the inside" as they learn to modify the adaptation gradient of lower layers.
- We empirically verify this theory on linear & logistic regression, and with deep network architectures.

Solutions

- Use larger deeper models: current go-to solution, undesirable in computelimited environments.
- Add extra linear layers on top of the mode: simple, universal, works decently but incurs small performance penalty.

 Move optimization parameters to a KFO meta-optimizer: best performance, lightweight post-adaptation, but expensive during meta-training.

Empirical Results

Extra linear layers improve shallow meta-learning.

Extra linear layers improve deep meta-learning.

Method	MAML				$MAML\ w/\ LinNet$				
CNN Layers	2	3	4	6	$\mid 2$	3	4	6	
Omniglot CIFAR-FS mini-ImageNet	62.2	68.9	70.9	71.3	88.1 66.1 60.5	71.1	74.4	71.9	

Meta-optimizers outperform MAML on 2-layer CNNs.

Dataset	MAML	$\mathrm{MAML}\;\mathrm{w}/$						
		MSGD	MC	T-Nets	META-KFO			
Omniglot CIFAR-FS mini-ImageNet	66.6 62.2 52.6	74.07 62.82 59.90	68.37	66.42	96.62 69.64 59.08			

Meta-optimizers are most effective with shallower models.

See our paper for more details, including:

- Theoretical analysis of 1D linear and logistic regression.
- Combining ANIL [2] with Meta-Optimizers.
- Why collapsing extra linear networks fails.