When MAML Can Adapt Fast
And How to Assist When It Cannot
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Summary Failure Mode Empirical Results
We take a closer look at Model Agnostic Meta-Learning (MAML) and show MAML fails to meta-learn with shallow T g Extra linear layers improve shallow meta-learning.
that it requires depth — shallow models fail because they lack parameters to models, even though they have sufficient ™~ — o | Buyg Ot WL CIEARFS w mindmageer
shape the gradients during fast adaptation. capacity to solve all tasks. N \ IS TP ol Tl | i
e Surprisingly, MAML fails to adapt on very simple tasks even with a model However, meta-learning succeeds when over- ... \ B0 o 8 [ e &
expressive enough to solve them perfectly; but, an over-parameterized parameterizing the models (with linear layers) i S—-—x— . =% | B S e | 3 i 2
model succeeds. without changing their original capacity. " hertions T etons et T - e e e
e Our analysis shows that this is because upper layers meta-learn update Why? . R R
functions for the bottom layers. . . _ _
* We propose three solutions to combat this issue: InS|ghts Extra linear layers improve deep meta-learning.
i i Method MAML MAML w/ LinNe
1. Usm_g deeper.non-llnear models, * Theoretical analysis on 1D shallow and deep models shows that: CNtN Tyors 2 3 4 6|2 3 /4 6t
2. Adcyr)g ext.ra linear (collapsable) layers at th.e gnd of the model, e deep models are required for meta-learning, because — 11 —
3. Tra_lnl_ng W'th.KFO (Kronecker-Factored Optimizer), a new meta- * the upper layers of the model facilitate (meta-)optimization. C;FAfg{-Fs 62.2 68.9 70.9 71.3|66.1 71.1 74.4 71.9
~optimizer which scales to large deep networks. | « We can interpret those upper layers as “meta-optimizers that work from the mini-TmageNet 52.6 540 64.1 64.6]60.5 60-2 64.9 64.1
» Empirically, we compare all three approaches and conclude that adding inside” as they learn to modify the adaptation gradient of lower layers.
linear layers is a simple solution that almost matches meta-optimizers, We empiri : - - o : : .
] ] i ] i plrlcally Verlfy this theory on linear & |Og|St|C regression, and with Meta_opt|m|zers Outperform MAML on 2_|ayer CNNs.
while also enabling control of the model size post-adaptation. deep network architectures. — NIV A
MAML: Model Agnostic Meta-Learning Solutions MSGD MC T-Nets META-KFO
The MAML [1] objective is simply expressed as: oAt G0 bogy 039 toas  oooa
J Py €xp " Overparameterized Linear Regression . ng Iarger.deeper models: current go-to solution, undesirable in compute- ﬁiﬁ&g:em 232 §§;3?) 223; Sg;jti %gjgg
minE. [£,(0 —aVeL-(0))] limited environments. | |
_ 0 162 e Add extra linear layers on top of the mode: simple, universal, works . _ ,
where: 12 decently but incurs small performance penalty Meta-optimizers are most effective with shallower models.
e 0 = the parameters to be learned, . - o | o 0 .
+ 72 atask index, x - —¢ DD Dly
e L7 £ the loss associated with a task. S M ‘ . £ £
el o o ol s 1) ]
Intuition: MAML tries _to_ metg-le_arn_ parameters that can be quickly adapt to * Move optimization parameters to a KFO meta-optimizer: best performance SR T A S S TR
any task from your training distribution. lightweight post-adaptation, but expensive during meta-training.
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