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Introduction

This blog post introduces the fundamentals of distributed deep learning and
presents some real-world applications. With the democratisation of deep
learning methods in the last decade, large - and small ! - companies have
invested a lot of e�orts into distributing the training procedure of neural
networks. Their hope: drastically reduce the time to train large models on
even larger datasets. Unfortunately, while every commercial product takes
advantage of these techniques, it is still di�cult for practitioners and re-
searchers to use them in their everyday projects. This article aims to change
that by providing a theoretical and practical overview.

Last year, as an intern at Nervana Systems I was able to expand their
distributed e�ort. During this 1 year internship, I familiarised myself with
quite a number of aspects of distributed deep learning and was able to work
on topics ranging from implementing e�cient GPU-GPU Allreduce routines
[1] to replicating Deepind’s Gorila [2]. I found this topic so fascinating that I
am now researching novel techniques for distributed optimization with Prof.
Chunming Wang, and applying them to robotic control [3] with Prof. Fran-
cisco Valero-Cuevas.

The Problem

Formulation and Stochastic Gradient Descent

Let’s �rst de�ne the problem that we would like to solve. We are trying to
train a neural network to solve a supervised task. This task could be any-
thing from classifying images to playing Atari games or predicting the next
word of a sentence. To do that, we’ll rely on an algorithm - and its variants
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- from the mathematical optimization literature: stochastic gradient de-
scent. Stochastic gradient descent (SGD) works by computing the gradient
direction of the loss function we are trying to minimize with respect to the
current parameters of the model. Once we know the gradient direction - aka
the direction of greatest increase - we’ll take a step in the opposite direction
since we are trying to minimize the �nal error.

More formally, we can represent our dataset as a distribution χ from
which we sample N tuples of inputs and labels (xi, yi) ∼ χ. Then, given a
loss function L (some common choices include the mean square error, the
KL divergence, or the negative log-likelihood) we want to �nd the optimal
set of weights Wopt of our deep model F . That is,

Wopt = arg min
W

E(x,y)∼χ[L(y, F (x;W ))]

Note:. In the above formulation we are not separating the dataset in train,
validation, and test sets. However, you need to do it !

In this case, SGD will iteratively update the weights Wt at timestep t
with Wt+1 = Wt − α · ∇WtL(yi, F (xi;Wt)). Here, α is the learning rate
and can be interpreted as the size of the step we are taking in the direction
of the negative gradient. As we will see later there are algorithms that try to
adaptively set the learning rate, but generally speaking it needs to be chosen
by the human experimenter.

One important thing to note is that in practice the gradient is evaluated
over a set of samples called the minibatch. This is done by averaging the
gradient of the loss for each sample in the minibatch. Taking the gradient
over the minibatch helps in two aspects.

1. It can be e�ciently computed by vectorizing the computations.
2. It allows us to obtain a better approximation of the true gradient of
L(y, F (x;W )) over χ, and thus makes us converge faster.

However, a very large batch size will simply result in computational
overhead since your gradient will not signi�cantly improve. Therefore, it
is usual to keep it between 32 and 1024 samples, even when our dataset con-
tains millions of examples.
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Variants of SGD

As we will now see, several variants of the gradient descent algorithm ex-
ist. They all try to improve the quality of the gradient by including more
or less sophisticated heuristics. For a more in-depth treatment, I would rec-
ommend Sebastian Ruder’s excellent blog post and the CS231n web page on
optimization.

Adding Momentum

Momentum techniques simply keep track of a weighted average of previ-
ous updates, and apply it to the current one. This is akin to the momentum
gained by a ball rolling downhill. In the following formulas, µ is the mo-
mentum parameter - how much previous updates we want to include in the
current one.

Table 1: Momentum Flavors of SGD

Momentum
Nesterov Momentum or Accelerated Gradient
[4]

vt+1 = µ · vt + α · ∇L

Wt+1 = Wt − vt+1

vt+1 = µ · vt − α∇L

Wt+1 = Wt − µvt + (1 + µ)vt+1

Nesterov’s accelerated gradient adds momentum to the momentum in an
attempt to look ahead for what is coming.

Adaptive Learning Rates

Finding good learning rates can be an expensive process, and a skill often
deemed closer to art or dark magic. The following techniques try to allevi-
ate this problem by automatically setting the learning rate, sometimes on a
per-parameter basis. The following descriptions are inspired by Nervana’s
implementation.

Note:. In the following formulas, ε is a constant to ensure numerical stabil-
ity, and µ is the decay constant of the algorithm, how fast we decrease the
learning rate as we converge.
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Table 2: Adaptively Scaling the Learning Rate

Adagrad [5] RMSProp [6]

st+1 = st + (∇L)2

Wt+1 = Wt −
α · ∇L√
st+1 + ε

st+1 = µ · st + (1− µ) · (∇L)2

Wt+1 = Wt −
α · ∇L√

st+1 + ε+ ε

Adadelta [7] Adam [8]

λt+1 = λt · µ+ (1− µ) · (∇L)2

∆Wt+1 = ∇L ·

√
δt + ε

λt+1 + ε

δt+1 = δt ·µ+(1−µ)·(∆Wt+1)2

Wt+1 = Wt −∆Wt+1

mt+1 = mt · βm + (1− βm) · ∇L

vt+1 = vt · βv + (1− βv) · (∇L)2

lt+1 = α ·
√

1− βpv
1− βpm

Wt+1 = Wt − lt+1
mt+1√
vt+1 + ε

Where p is the current epoch, that is 1 + the number of passes through
the dataset.

Conjugate Gradients

The following method tries to estimate the second order derivative of the loss
function. This second order derivative - the HessianH - is most ably used in
Newton’s algorithm (Wt+1 = Wt−α ·H−1∇L) and gives extremely useful
information about the curvature of the loss function. Properly estimating
the Hessian (and its inverse) has been a long time challenging task since the
Hessian is composed of |W |2 terms. For more information I’d recommend
these papers [9–11] and chapter 8.2 of the deep learning book [12]. The
following description was inspired by Wright and Nocedal [13].

pt+1 = βt+1 · pt −∇L

Wt+1 = α · pt+1
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Where βt+1 can be computed by the Fletcher-Rieves or Hestenes-Stiefel
methods. (Notice the subscript of the gradients.)

Table 3: Compute the Non-linear Conjugate Direction

Fletcher-Rieves Hestenes-Stiefel

βt+1 =
∇WtLT · ∇WtL
∇Wt−1LT · ∇Wt−1L

βt+1 =
∇WtLT · (∇WtL −∇Wt−1L)

(∇WtL −∇Wt−1L)T · pt

Beyond Sequentiallity

Let’s now delve into the core of this article: distributing deep learning. As
mentioned above, when training really deep models on really large datasets
we need to add more parallelism to our computations. Distributing linear
algebra operations on GPUs is not enough anymore, and researchers have
began to explore how to use multiple machines. That’s when deep learning
met High-Performance Computing (HPC).

Synchronous vs Asynchronous

There are two approaches to parallelize the training of neural networks:
model parallel and data parallel. Model parallel consists of “breaking” the
learning model, and place those “parts” on di�erent computational nodes.
For example, we could put the �rst half of the layers on one GPU, and the
other half on a second one. Or, split layers in their middle and assign them
to separate GPUs. While appealing, this approach is rarely used in practice
because of the slow communication latency between devices. Since I am not
very familiar with model parallelism, I’ll focus the rest of the blog post on
data parallelism.

Data parallelism is rather intuitive; the data is partitioned across compu-
tational devices, and each device holds a copy of the learning model - called
a replica or sometimes worker. Each replica computes gradients on its shard
of the data, and the gradients are combined to update the model parame-
ters. Di�erent ways of combining gradients lead to di�erent algorithms and
results, so let’s have a closer look.
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Synchronous Distributed SGD

In the synchronous setting, all replicas average all of their gradients at every
timestep (minibatch). Doing so, we’re e�ectively multiplying the batch size
M by the number of replicasR, so that our overall minibatch size isBG =
R ·M . This has several advantages.

1. The computation is completely deterministic.
2. We can work with fairly large models and large batch sizes even on

memory-limited GPUs.
3. It’s very simple to implement, and easy to debug and analyze.

Figure 1

This path to parallelism puts a strong emphasis on HPC, and the hard-
ware that is in use. In fact, it will be challenging to obtain a decent speedup
unless you are using industrial hardware. And even if you were using such
a hardware, the choice of communication library, reduction algorithm, and
other implementation details (e.g., data loading and transformation, model
size, . . . ) will have a strong e�ect on the kind of performance gain you will
encounter.

The following pseudo-code describes synchronous distributed SGD at
the replica-level, for R replicas, T timesteps, and M global batch size.
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Algorithm 1 Synchronous SGD
while t < T do

Get: a minibatch (x, y) ∼ χ of size M/R.
Compute: ∇L(y, F (x;Wt)) on local (x, y).
AllReduce: sum all∇L(y, F (x;Wt)) across replicas into ∆Wt

Update: Wt+1 = Wt − α∆Wt
R

t = t+ 1
(Optional) Synchronize: Wt+1 to avoid numerical errors

Asynchronous Distributed SGD

The asynchronous setting is slightly more interesting from a mathematical
perspective, and slightly trickier to implement in practice. Each replica will
now access a shared-memory space, where the global parameters WG

t are
stored. After copying the parameters in its local memory WL

t , it will com-
pute the gradients ∇L and the update ∆Wt with respect to its current Wt.
The �nal step is to apply ∆WL

t to the global parameters in shared memory.

Algorithm 2 Asynchronous SGD
while t < T do

Get: a minibatch (x, y) ∼ χ of size M/R.
Copy: Global WG

t into local WL
t .

Compute: ∇L(y, F (x;WL
t )) on (x, y).

Set: ∆WL
t = α · ∇L(y, F (x;WL

t ))
Update: WG

t+1 = WG
t −∆WL

t

t = t+ 1

The advantage of adding asynchrony to our training is that replicas can
work at their own pace, without waiting for others to �nish computing their
gradients. However, this is also where the trickiness resides; we have no
guarantee that while one replica is computing the gradients with respect to
a set of parameters, the global parameters will not have been updated by
another one. If this happens, the global parameters will be updated with
stale gradients - gradients computed with old versions of the parameters.

Page 7



December 15, 2016 An Introduction to Distributed Deep Learning

Figure 2

In order to counter the e�ect of staleness, Zhang & al. [14] suggested
to divide the gradients by their staleness. By limiting the impact of very
stale gradients, they are able to obtain convergence almost identical to a
synchronous system. In addition, they also proposed a generalization of syn-
chronous and asynchronous SGD named n-softsync. In this case, updates to
the shared global parameters are applied in batches of n. Note that n = 1 is
our asynchronous training, while n = R is synchronous. A corresponding
alternative named backup workers was suggested by Chen & al. [15] in the
summer of 2016.

Finally, there is another view of asynchronous training that is less often
explored in the litterature. Each replica executes k optimization steps locally,
and keeps an aggregation of the updates. Once those k steps are executed, all
replicas synchronize their aggregated update and apply them to the param-
eters before the k steps. This approach is best used with Elastic Averaging
SGD [16], and limits the frequency at which replicas need to communicate.

Implementation

Now that we have a decent understanding of the mechanics of distributed
deep learning, let’s explore possible implementations.
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Parameter Server vs Tree-reductions

The �rst decision to make is how to setup the architecture of the system. In
this case, we mainly have two options: parameter server or tree-reductions.
In the parameter server case, one machine is responsible for hodling and
serving the global parameters to all replicas. As presented in [17], there can
be several servers holding di�erent parameters of the model to avoid con-
tention, and they can themselves be hierarchically connected (eg, tree-shape
in [18]). One advantage of using parameter servers is that it’s easy to imple-
ment di�erent levels of asynchrony.

Figure 3

However as discussed in [19], parameter servers tend to be slower and
don’t scale as well as tree-reduction architectures. By tree-reduction, I mean
an infrastructure where collective operations are executed without a higher-
level manager process. The message-passing interface (MPI) and its collec-
tive communication operations are typical examples. I particularly appreci-
ate this setting given that it stays close to the math, and it enables a lot of
engineering optimizations. For example, one could choose the reduction al-
gorithm based on the network topology, include specialized device-to-device
communication routines, and even truly take advantage of fast interconnect
hardware. One caveat: I haven’t (yet) come across a good asynchronous im-
plementation based on tree-reductions.

Layer Types

In a nutshell, all layer types can be supported with a single implementation.
After the forward pass, we can compute the gradients of our model and then
allreduce them. In particular, nothing special needs to be done for recurrent
networks, as long as we include gradients for all parameters of the model.
(eg, the biases, γ, β for batch normalization, . . . )
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Few aspects should impact the design of your distributed model. The
main one is to (appropriately) consider convolutions. They parallelize par-
ticularly well given that they are quite compute heavy with respect to the
number of parameters they contain. This is a desirable property of the net-
work, since you want to limit the time spent in communication - that’s sim-
ply overhead - as opposed to computation. In addition to being particularly
good with spatially-correlated data, convolutions achieve just that since they
re-multiply feature maps all over the input. More details on how to paral-
lelize convolutional (and fully-connected) layers is available in [20]. Another
point to consider is using momentum-based optimizers with residuals and
quantized weights. We will explore this trick in the next subsection.

Tricks

Over the years a few tricks were engineered in order to reduce the overhead
induced by communicating and synchronizing updates. I am aware of the
following short and non-exhaustive list. If you know more, please let me
know !

Device-to-Device Communication When using GPUs, one important
detail is to ensure that memory transfers are are done from device-to-device.
Avoiding the transfer to host memory is not always easy, but more and more
libraries support it. Note that some GPU cards1 will not explicitly say that
they support GPU-GPU communication, but you can still get it to work.

Overlapping Computation If you are using neural networks like the rest
of us, you backpropagate the gradients. Then a good idea is to start synchro-
nizing the gradients of the current layer while computing the gradients of
the next one.

Quantized Gradients Instead of communicating the gradients with full
�oating-point accuracy, we can use reduced precision. Tim Dettmers [21]
suggests an algorithm to do it, while Nikko Strom [22] quantizes gradients
that are above a certain value. This gave him sparse gradients - which he
compressed - and in order to keep part of the information discarded at each
minibatch, he builds a residual. This allows even small weight updates to
happen, but delays them a little.

1I know that it is possible with GeForce 980s, 1080s, and both Maxwell and Pascal Titan
Xs.
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ReductionAlgorithm As mentioned above, di�erent reduction algorithms
work best with di�erent PICe / network topologies. (E.g., ring, butter�y,
slim�y, ring-segmented) [1, 23–25]

Benchmarks

The last implementation detail I would like to mention is the way to e�ec-
tively benchmark a distributed framework. There is a ferocious battle be-
tween framework developers on who is fastest and reported results might be
a bit confusing. In my opinion, since we are trying to mimic the behaviour
of a sequential implementation we should be looking at scalability with a
�xed overall batch size BG. That means we observe the speedup (time to
convergence, time per epoch/batch, loss error) as we increase the number of
computational devices, but make sure to rescale the local batch size by the
number of replicas such thatBG = R ·M stays constant across experiments.

Conclusion

Harnessing the power of distributed deep learning is not as di�cult as it
seems, and can lead to some drastic performance increase. This power should
be available to everyone and not just large industrial companies. In addition,
having a good understanding of how parallelized learning works might allow
you to take advantage of some nice properties that would be hard to replicate
in a sequential setup. Finally, I hope you learned something new through this
article or, at least, you have been directed to some interesting papers.
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