Managing Machine Learning Experiments

Seb Arnold - May 23, 2018

Who Am I?

- PhD Student in Reinforcement Learning and Optimization.
- Contributor to PyTorch, TensorFlow, neon, Keras.
- Maintainer of Randopt.

O PyTorch

With the support of Fund3

1. Code your experiment. (10%)

Figure 1: The Typical ML Loop

- 1. Code your experiment. (10%)
- 2. Search for hyperparams. (70%)

Figure 1: The Typical ML Loop

- 1. Code your experiment. (10%)
- 2. Search for hyperparams. (70%)
- 3. Analyze the results. (20%)

Figure 1: The Typical ML Loop

- 1. Code your experiment. (10%)
- 2. Search for hyperparams. (70%)
- 3. Analyze the results. (20%)
- **4.** Repeat. (∞)

Figure 1: The Typical ML Loop

Randopt Overview

Features

- Human-readable format
- Support for parallelism / distributed / asynchronous experiments
- Command-line and Programmatic API
- Shareable Web Visualization
- Automatic Hyperparameter Search


```
import randopt as ro
```



```
import randopt as ro
exp = ro.Experiment(name='quadratic',
                    directory='mydir')
```



```
import randopt as ro
exp = ro.Experiment(name='quadratic',
                    directory='mydir')
x, y = 3, 4
loss = lambda a, b: a**2 + b**2
```

```
import randopt as ro
exp = ro.Experiment(name='quadratic',
                    directory='mydir')
x, y = 3, 4
loss = lambda a, b: a**2 + b**2
result = loss(x, y)
```

```
import randopt as ro
exp = ro.Experiment(name='quadratic',
                    directory='mydir')
x, y = 3, 4
loss = lambda a, b: a**2 + b**2
result = loss(x, y)
exp.add_result(result, data={
    'x': x,
    'y': y,
```

```
import randopt as ro
exp = ro.Experiment(name='quadratic',
                     directory='myresults')
x, y = 3, 4
loss = lambda a, b: a**2 + b**2
result = loss(x, y)
exp.add_result(result, data={
    ^{1}x^{1}: x
    'V': V,
})
```

Directory structure

- experiment.py
- myresults/
 - 1519732....json

1519732....json

```
{
    'x': 3,
    'y': 4,
    'result': 25
}
```

Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

- Requires familiarity with each model and each hyperparam.
- The relationship between hyperparameters is non-linear.
- Is task AND data dependent.
- A long and tedious task when obtaining a single result takes *weeks*.

Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

- Requires familiarity with each model and each hyperparam.
- The relationship between hyperparameters is non-linear.
- Is task AND data dependent.
- A long and tedious task when obtaining a single result takes weeks.

Note Automatic hyperparameter tuning is not optimal, but decent.

Search Algorithms

Random Search

Let's modify our previous example.

```
exp = ro.Experiment(name='quadratic', directory='mydir', params={
   'x': ro.Uniform(-0.5, 0.1),
   'y': ro.Truncated(ro.Gaussian(), min=-0.5, max=0.5)
})
```

Random Search

Let's modify our previous example.

```
exp = ro.Experiment(name='quadratic', directory='mydir', params={
    'x': ro.Uniform(-0.5, 0.1),
    'y': ro.Truncated(ro.Gaussian(), min=-0.5, max=0.5)
})
```

Then we can record 100 results.

```
for i in range(100):
    exp.sample_all_params()
    result = loss(exp.x, exp.y)
    exp.add_result(result)
```

Or set values manually.

```
exp.x = 0.01
exp.y = 0.001
result = loss(exp.x, exp.y)
exp.add_result(result)
```

Grid Search

Let's use GridSearch instead of Experiment.

```
exp = ro.GridSearch(name='quadratic', directory='mydir', params={
    'x': ro.Choice([-0.5, -0.1, 0.1, 0.5]),
    'y': ro.Choice([-0.1, -0.001, 0.1, 0.3])
})
```

Grid Search

Let's use GridSearch instead of Experiment.

```
exp = ro.GridSearch(name='quadratic', directory='mydir', params={
    'x': ro.Choice([-0.5, -0.1, 0.1, 0.5]),
    'y': ro.Choice([-0.1, -0.001, 0.1, 0.3])
})
```

Every call to exp.sample_all_params() does:

- Open all saved JSONSummaries in mydir/quadratic/
- 2. Count the number of runs for each configuration defined in the grid.
- 3. Set parameters to least ran configuration.

Evolutionary Search

Let's use Evolutionary instead of Experiment.

```
exp = ro.GridSearch(name='quadratic', directory='mydir', params={
    'x': ro.Gaussian(0.0, 0.01),
    'y': ro.Choice([-0.1, 0, 0.1])
})
```

Evolutionary Search

Let's use Evolutionary instead of Experiment.

```
exp = ro.GridSearch(name='quadratic', directory='mydir', params={
    'x': ro.Gaussian(0.0, 0.01),
    'y': ro.Choice([-0.1, 0, 0.1])
})
```

Every call to exp.sample_all_params() does:

- 1. Select 10 best config from saved JSONSummary in mydir/quadratic/.
- 2. Uniformly at random, choose parent from the 10 best.
- 3. Sample perturbations from given samplers and apply them to parent.
- 4. Set parameters to perturbed parent.

Managing Experiments

The Problem: Keeping track of results is a pain.

Small scale

- For short runs, often rely on memory or napkin.
- For long runs, often rely on spreadsheet or notebook.

Large scale

Database of results.

More problems

- What about collaboration?
- What about different machines / drivers / tiny code changes ?
- What about human-friendliness?

Exploring Results

1. Programmatic API

```
exp.count() # 10
exp.all() # Generator over all JSONSummaries

best = exp.top(10, fn=lambda a, b: a.result < b.result) # Sort + Select
best.mean('x')
best.std('x')
best_of_best = best[:5]
best_of_best_of_best = best_of_best.filter(lambda a: a.result < 0.1)</pre>
```

Exploring Results

1. Programmatic API

```
exp.count() # 10
exp.all() # Generator over all JSONSummaries

best = exp.top(10, fn=lambda a, b: a.result < b.result) # Sort + Select
best.mean('x')
best.std('x')
best_of_best = best[:5]
best_of_best_of_best = best_of_best.filter(lambda a: a.result < 0.1)</pre>
```

2. Filesystem

Edit / Copy / Remove summaries from the command line, file explorer, or your favorite editor (vim).

Visualizing Results

The Problem: Creating visualizations is tedious and often redundant.

In fact, you either want to plot the same old quantities or need something you've never done before.

Web Visualization

By calling

roviz.py mydir/quadratic

we obtain

Demo Time!

Custom Visualizations

Computing result statistics is easy.

```
import randopt as ro

exp = ro.Experiment(name='quadratic', directory='mydir')
results = list(exp.all())
xs = [r.x for r in results]
ys = [r.y for r in results]
zs = [r.result for r in results]
```

Which we plot with our favorite package.

```
from plotify import Plot3D
p = Plot3D('Quadratic Plot')
p.plot(xs, ys, zs, label='Result')
p.show()
```


Custom Visualizations

Figure 2: Custom 3D Plot

Advanced Features

ro.cli

• Python utility to create command-line interfaces.

ropt.py

Command-line helper for hyperparameter search.

attachments

Handling large data results.

parallel experiments

Tapping into the super cluster you have.


```
@ro.cli
def run_experiment(x=23, y=12.0, dataset='mnist'):
    pass # Heavy computation

if __name__ == '__main__':
    ro.parse()
```

```
@ro.cli
def run_experiment(x=23, y=12.0, dataset='mnist'):
    pass # Heavy computation

if __name__ == '__main__':
    ro.parse()
```

```
python experiment.py run_experiment --x 12 --y 0.1 --dataset 'cifar'
```

```
@ro.cli
def run_experiment(x=23, y=12.0, dataset='mnist'):
    pass # Heavy computation

if __name__ == '__main__':
    ro.parse()
```

```
python experiment.py run_experiment --x 12 --y 0.1 --dataset 'cifar'
```

```
@ro.experiment
def run_experiment(x=23, y=12.0, dataset='mnist'):
    # Heavy computation
    return result, data, attachments
```


The Problem: CLIs are great, but so painful to write.

```
@ro.cli
def run_experiment(x=23, y=12.0, dataset='mnist'):
    pass # Heavy computation

if __name__ == '__main__':
    ro.parse()
```

```
python experiment.py run_experiment --x 12 --y 0.1 --dataset 'cifar'
```

```
@ro.experiment
def run_experiment(x=23, y=12.0, dataset='mnist'):
    # Heavy computation
    return result, data, attachments
```

Thanks commandr for inspiration!

The Problem: 1 script for experiment, 1 for hyperparameters search.

The Problem: 1 script for experiment, 1 for hyperparameters search.

```
python run_experiment \
    --x=12 \
    --y=23 \
    --dataset='mnist'
```

The Problem: 1 script for experiment, 1 for hyperparameters search.

The Problem: 1 script for experiment, 1 for hyperparameters search.

The Problem: 1 script for experiment, 1 for hyperparameters search.

The Problem: 1 script for experiment, 1 for hyperparameters search.

```
python run_experiment --x 0.00213 --y -0.1 --dataset='mnist'
python run_experiment --x 0.0361 --y -0.1 --dataset='mnist'
python run_experiment --x -0.00887 --y 0.0 --dataset='mnist'
...
...
```


The Problem: JSON Summaries aren't suited for large data results.

The Problem: JSON Summaries aren't suited for large data results.

The Problem: JSON Summaries aren't suited for large data results.

```
result = next(exp.all())
result.attachment['images'] # Lazy loaded
```

The Problem: JSON Summaries aren't suited for large data results.

```
result = next(exp.all())
result.attachment['images'] # Lazy loaded
```

Attachments are

- for anything that is not human readable,
- linked to a particular JSON Summary,
- serialized via cPickle,
- · lazy-loaded upon first access.

Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.

Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.

Solution: your favorite way of syncing a directory among computing nodes.

Some examples:

- single desktop machine: use multiple processes.
- compute cluster: use a shared-memory node.
- collaborators: use git/Dropbox synced folder.

Randopt does not impose constraint on the sharing strategy!

Even More Features

Features Not Covered

- Multi-Objective Optimization (ro.objectives)
- Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)

Even More Features

Features Not Covered

- Multi-Objective Optimization (ro.objectives)
- Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)

Future Features

- Performance Improvements
- Debugging ML Models
- Fancier Built-in Visualizations
- Your biggest ML hurdle?

Fin

Thank you!

Fin

Thank you!

Learn more at: github.com/seba-1511/randopt

