Managing Machine Learning Experiments
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The Problem

Analyse Run

1. Code your experiment. (10%)

Figure 1: The Typical ML Loop
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The Problem

Analyse Run

1. Code your experiment. (10%)

2. Search for hyperparams. (70%)

3. Analyze the results. (20%)

4, Repeat. ()
P Figure 1: The Typical ML Loop
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Randopt Overview

experiment.py

JSON Summaries I

Features

Programmatic API

HTML Visualization

* Human-readable format
* Support for parallelism / distributed / asynchronous experiments

+ Command-line and Programmatic API
* Shareable Web Visualization
+ Automatic Hyperparameter Search
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Randopt 101

import randopt as ro
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Randopt 101

import randopt as ro

exp = ro.Experiment (name='quadratic',
directory='mydir"')

x, y =3, 4
loss = lambda a, b: ax*2 + b*x%2
result = loss(x, V)

exp.add_result (result, data={

Tt

Yy

Xy
Y

Uarl o
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Randopt 101

Directory structure

import randopt as ro

© experiment.py

exp = ro.Experiment (name='quadratic',

directory="myresults') ° nqyreSL“tS/
5 W= 3, 4 + 1519732... .json
loss = lambda a, b: ax*2 + bx*2

result = loss(x, y) 1519732... .json

exp.add_result (result, data={

'x': x, {
vy, 'x': 3,
3 v

'result': 25
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Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.
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Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

* Requires familiarity with each model and each hyperparam.
* The relationship between hyperparameters is non-linear.

* Is task AND data dependent.
* Along and tedious task when obtaining a single result takes weeks.
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Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

* Requires familiarity with each model and each hyperparam.
* The relationship between hyperparameters is non-linear.

* Is task AND data dependent.
* Along and tedious task when obtaining a single result takes weeks.

Note Automatic hyperparameter tuning is not optimal, but decent.
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Search Algorithms
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Random Search

Let's modify our previous example.

exp = ro.Experiment (name='quadratic', directory='mydir', params={
'x': ro.Uniform(-0.5, 0.1),
ro.Truncated (ro.Gaussian (), min=-0.5, max=0.5)

X

})
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Random Search

Let's modify our previous example.

exp = ro.Experiment (name='quadratic', directory='mydir', params={
'x': ro.Uniform(-0.5, 0.1),
ro.Truncated (ro.Gaussian (), min=-0.5, max=0.5)

b

Then we can record 100 results. Or set values manually.
for i in range(100) : exp.x = 0.01
exp.sample_all_params () exp.y = 0.001
result = loss(exp.x, exp.y) result = loss(exp.x, exp.y)
exp.add_result (result) exp.add_result (result)
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Grid Search

Let's use GridSearch instead of Experiment.

N
0.

exp = ro.GridSearch (name='quadratic',
'x'": ro.Choice([-0.5, -0.1, 0.1,
ro.Choice([-0.1, -0.001, 0.1,

b
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directory='mydir',
51),
0.

31)

params={



Grid Search

Let's use GridSearch instead of Experiment.

exp = ro.GridSearch (name='quadratic', directory='mydir', params={
! 0.9, =0,1, O.1, 0.5]),

: ro.Choice([-0.1, -0.001, 0.1, 0.3])

x': ro.Choice([-0.5

1)
Every call to exp.sample_all_params () does:

1. Open all saved JSONSummaries in mydir/quadratic/
2. Count the number of runs for each configuration defined in the grid.
3. Set parameters to least ran configuration.
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Evolutionary Search

Let's use Evolutionary instead of Experiment.

exp = ro.GridSearch (name="'quadratic', directory='mydir', params={
'x': ro.Gaussian(0.0, 0.01),
: ro.Choice ([-0.1, 0, 0.11])
})
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Evolutionary Search

Let's use Evolutionary instead of Experiment.

ro.GridSearch (name="quadratic',
g 1 ian(0.0, 0.01),
.1, 0, 0.11)

directory="mydir', params={

Every call to exp.sample_all_params () does:

1. Select 10 best config from saved JSONSummary in mydir/quadratic/.
2. Uniformly at random, choose parent from the 10 best.

3. Sample perturbations from given samplers and apply them to parent.
4. Set parameters to perturbed parent.
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Managing Experiments

The Problem: Keeping track of results is a pain.

Small scale

* For short runs, often rely on memory or napkin.
* For long runs, often rely on spreadsheet or notebook.

Large scale
* Database of results.
More problems

* What about collaboration ?
* What about different machines / drivers / tiny code changes ?
* What about human-friendliness ?
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Exploring Results

1. Programmatic API

exp.count ()
exp.all()

best = exp.top (10, fn=lambda a, b: a.result < b.result
best .mean ('
best.std('x")

best_of_best = best[:5]

best_of_best_of_best = best_of_best.filter (lambda a: a.result < 0.1

x")
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Exploring Results

1. Programmatic API

exp.count ()
exp.all()

best = exp.top (10, fn=lambda a, b: a.result < b.result)

best.mean ('x")

best.std('x")

best_of_best = best[:5]
best_of_best_of_best = best_of_best.filter (lambda a: a.result < 0.1)

2. Filesystem
Edit / Copy / Remove summaries from the command line, file explorer, or your
favorite editor (vim).
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Visualizing Results

The Problem: Creating visualizations is tedious and often redundant.

In fact, you either want to plot the same old quantities or need something you've
never done before.
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Web Visualization

By calling

roviz.py mydir/quadratic

we obtain
Demo Time!
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https://seba-1511.github.io/randopt/assets/html/simple_example.html

Custom Visualizations

Computing result statistics is easy.

import randopt as ro

exp = ro.Experiment (name='quadratic', directory='mydir')
results = list (exp.all())

Xs = [r.x for r in results]

ys = [r.y for r in results]

zs = [r.result for r in results]

Which we plot with our favorite package.

from plotify import Plot3D
p = Plot3D('Quadratic Plot')
'R

p.plot(xs, ys, zs, label='Result')
p.show ()
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Custom Visualizations

UsC

Quadratic Plot

e Result

Figure 2: Custom 3D Plot



Advanced Features

ro.cli

* Python utility to create command-line interfaces.
ropt.py

+ Command-line helper for hyperparameter search.
attachments

* Handling large data results.
parallel experiments

+ Tapping into the super cluster you have.
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Command-Line Interface

The Problem: CLIs are great, but so painful to write.
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https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli

def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

.

if name == '__main

ro.parse ()
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https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

if __ name_ == '_ main_ '
ro.parse ()
python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'
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https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):

if name == main
ro.parse ()

python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'

@ro.experiment
def run_experiment (x=23, y=12.0, dataset='mnist'):

return result, data, attachments
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https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

if name == '__main 3
ro.parse ()

python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'

@ro.experiment
def run_experiment (x=23, y=12.0, dataset='mnist'):

return result, data, attachments

Thanks commandr for inspiration !
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https://github.com/tellapart/commandr

CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.
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CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

python run_experiment \
——x=12 \
y=23 \

—-dataset="'mnist'
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CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

ropt.py python run_experiment \
——x='G sian(0.0,0.1)" \
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CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

_NSEARCH=120 ROPT_TYPE=Evolutionary ROP NAME='quadratic' ROPT_D
ropt.py python run_experiment \
sian(0.0,0.1)" \
"hoice ([-0.1,0.0,0.17)" \

——dataset="mnist'
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CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

_NSEARCH=120 ROPT_TYPE=Evolutionary ROPT_NAME='quadratic' ROPT_DIR='mydir'\
ropt.py python run_experiment \

——x='Gaussian(0.0,0.1)" \
——y="Choice([-0.1,0.0,0.1])" \
——-dataset="mnist'

python run_experiment --x 0.00213 --y -0.1 --dataset="'mnist'

python run_experiment --x 0.0361 --y -0.1 --dataset="'mnist'

python run_experiment --x -0.00887 --y 0.0 --dataset="mnist'
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Attachments

The Problem: JSON Summaries aren't suited for large data results.
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Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,
data={'convergence': mylist},

attachment={"'imac : large_image_list})
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Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,
data={'convergence': mylist},
attachment={"'images': large_image_list})

result = next (exp.all())
result.attachment ['images']
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Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,

data={"'convergen

: mylist},

attachment={"'images': large_image_list})

result = next (exp.all())
result.attachment ['images']

Attachments are

+ for anything that is not human readable,
* linked to a particular JSON Summary,

* serialized via cPickle,

* lazy-loaded upon first access.
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Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.
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Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.

Solution: your favorite way of syncing a directory among computing nodes.

Some examples:

* single desktop machine: use multiple processes.
+ compute cluster: use a shared-memory node.
+ collaborators: use git/Dropbox synced folder.

Randopt does not impose constraint on the sharing strategy !
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Even More Features

Features Not Covered

* Multi-Objective Optimization (ro.objectives)
* Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)
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Even More Features

Features Not Covered

* Multi-Objective Optimization (ro.objectives)
* Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)

Future Features

*+ Performance Improvements
*+ Debugging ML Models

* Fancier Built-in Visualizations
* Your biggest ML hurdle ?
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Fin

Thank you'!
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htpp://github.com/seba-1511/randopt

Fin

Thank you'!

Learn more at: github.com/seba-1511/randopt

y/seba—1 511 @seba—1 511.com gl? /seba-1511
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