Managing Machine Learning Experiments

Seb Arnold - May 23, 2018




Who Am | ?

UsC

PhD Student in Reinforcement
. izt shalab
Learning and Optimization. 5 USC Universicy of
Southern California

Contributor to PyTorch, =
TensorFlow, neon, Keras. £

O PyTorch
Maintainer of Randopt.

With the support of Fund3




The Problem

Analyse Run

1. Code your experiment. (10%)

Figure 1: The Typical ML Loop

UsC



The Problem

Analyse Run

1. Code your experiment. (10%)

2. Search for hyperparams. (70%)

Figure 1: The Typical ML Loop

UsC



The Problem

Analyse Run

1. Code your experiment. (10%)

2. Search for hyperparams. (70%)

3. Analyze the results. (20%)

Figure 1: The Typical ML Loop

UsC



The Problem

Analyse Run

1. Code your experiment. (10%)

2. Search for hyperparams. (70%)

3. Analyze the results. (20%)

4, Repeat. ()
P Figure 1: The Typical ML Loop

UsC



Randopt Overview

experiment.py

JSON Summaries I

Features

Programmatic API

HTML Visualization

* Human-readable format
* Support for parallelism / distributed / asynchronous experiments

+ Command-line and Programmatic API
* Shareable Web Visualization
+ Automatic Hyperparameter Search

UsC



Randopt 101

import randopt as ro

UsC



Randopt 101

import randopt as ro

exp = ro.Experiment (name='quadratic',
directory='mydir"')

UsC



Randopt 101

import randopt as ro

exp = ro.Experiment (name='quadratic',
directory='mydir"')
3

X, y =3, 4

loss = lambda a, b: ax*2 + b*x%2

UsC



Randopt 101

import randopt as ro

exp = ro.Experiment (name='quadratic',
directory='mydir"')
X, y =3, 4

loss = lambda a, b: ax*2 + b*x%2

result = loss(x, V)

UsC



Randopt 101

import randopt as ro

exp = ro.Experiment (name='quadratic',
directory='mydir"')

x, y =3, 4
loss = lambda a, b: ax*2 + b*x%2
result = loss(x, V)

exp.add_result (result, data={

Tt

Yy

Xy
Y

Uarl o

UsC



Randopt 101

Directory structure

import randopt as ro

© experiment.py

exp = ro.Experiment (name='quadratic',

directory="myresults') ° nqyreSL“tS/
5 W= 3, 4 + 1519732... .json
loss = lambda a, b: ax*2 + bx*2

result = loss(x, y) 1519732... .json

exp.add_result (result, data={

'x': x, {
vy, 'x': 3,
3 v

'result': 25

UsC



Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

UsC



Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

* Requires familiarity with each model and each hyperparam.
* The relationship between hyperparameters is non-linear.

* Is task AND data dependent.
* Along and tedious task when obtaining a single result takes weeks.

UsC



Searching for Hyperparameters

The Problem: Finding good hyperparameters is akin to black magic.

* Requires familiarity with each model and each hyperparam.
* The relationship between hyperparameters is non-linear.

* Is task AND data dependent.
* Along and tedious task when obtaining a single result takes weeks.

Note Automatic hyperparameter tuning is not optimal, but decent.

UsC



Search Algorithms

UsC



Random Search

Let's modify our previous example.

exp = ro.Experiment (name='quadratic', directory='mydir', params={
'x': ro.Uniform(-0.5, 0.1),
ro.Truncated (ro.Gaussian (), min=-0.5, max=0.5)

X

})

UsC



Random Search

Let's modify our previous example.

exp = ro.Experiment (name='quadratic', directory='mydir', params={
'x': ro.Uniform(-0.5, 0.1),
ro.Truncated (ro.Gaussian (), min=-0.5, max=0.5)

b

Then we can record 100 results. Or set values manually.
for i in range(100) : exp.x = 0.01
exp.sample_all_params () exp.y = 0.001
result = loss(exp.x, exp.y) result = loss(exp.x, exp.y)
exp.add_result (result) exp.add_result (result)

UsC



Grid Search

Let's use GridSearch instead of Experiment.

N
0.

exp = ro.GridSearch (name='quadratic',
'x'": ro.Choice([-0.5, -0.1, 0.1,
ro.Choice([-0.1, -0.001, 0.1,

b

UsC

directory='mydir',
51),
0.

31)

params={



Grid Search

Let's use GridSearch instead of Experiment.

exp = ro.GridSearch (name='quadratic', directory='mydir', params={
! 0.9, =0,1, O.1, 0.5]),

: ro.Choice([-0.1, -0.001, 0.1, 0.3])

x': ro.Choice([-0.5

1)
Every call to exp.sample_all_params () does:

1. Open all saved JSONSummaries in mydir/quadratic/
2. Count the number of runs for each configuration defined in the grid.
3. Set parameters to least ran configuration.

UsC



Evolutionary Search

Let's use Evolutionary instead of Experiment.

exp = ro.GridSearch (name="'quadratic', directory='mydir', params={
'x': ro.Gaussian(0.0, 0.01),
: ro.Choice ([-0.1, 0, 0.11])
})

UsC



Evolutionary Search

Let's use Evolutionary instead of Experiment.

ro.GridSearch (name="quadratic',
g 1 ian(0.0, 0.01),
.1, 0, 0.11)

directory="mydir', params={

Every call to exp.sample_all_params () does:

1. Select 10 best config from saved JSONSummary in mydir/quadratic/.
2. Uniformly at random, choose parent from the 10 best.

3. Sample perturbations from given samplers and apply them to parent.
4. Set parameters to perturbed parent.

UsC



Managing Experiments

The Problem: Keeping track of results is a pain.

Small scale

* For short runs, often rely on memory or napkin.
* For long runs, often rely on spreadsheet or notebook.

Large scale
* Database of results.
More problems

* What about collaboration ?
* What about different machines / drivers / tiny code changes ?
* What about human-friendliness ?

UsC



Exploring Results

1. Programmatic API

exp.count ()
exp.all()

best = exp.top (10, fn=lambda a, b: a.result < b.result
best .mean ('
best.std('x")

best_of_best = best[:5]

best_of_best_of_best = best_of_best.filter (lambda a: a.result < 0.1

x")

UsC



Exploring Results

1. Programmatic API

exp.count ()
exp.all()

best = exp.top (10, fn=lambda a, b: a.result < b.result)

best.mean ('x")

best.std('x")

best_of_best = best[:5]
best_of_best_of_best = best_of_best.filter (lambda a: a.result < 0.1)

2. Filesystem
Edit / Copy / Remove summaries from the command line, file explorer, or your
favorite editor (vim).

UsC



Visualizing Results

The Problem: Creating visualizations is tedious and often redundant.

In fact, you either want to plot the same old quantities or need something you've
never done before.

UsC



Web Visualization

By calling

roviz.py mydir/quadratic

we obtain
Demo Time!

UsC


https://seba-1511.github.io/randopt/assets/html/simple_example.html

Custom Visualizations

Computing result statistics is easy.

import randopt as ro

exp = ro.Experiment (name='quadratic', directory='mydir')
results = list (exp.all())

Xs = [r.x for r in results]

ys = [r.y for r in results]

zs = [r.result for r in results]

Which we plot with our favorite package.

from plotify import Plot3D
p = Plot3D('Quadratic Plot')
'R

p.plot(xs, ys, zs, label='Result')
p.show ()

UsC



Custom Visualizations

UsC

Quadratic Plot

e Result

Figure 2: Custom 3D Plot



Advanced Features

ro.cli

* Python utility to create command-line interfaces.
ropt.py

+ Command-line helper for hyperparameter search.
attachments

* Handling large data results.
parallel experiments

+ Tapping into the super cluster you have.

UsC



Command-Line Interface

The Problem: CLIs are great, but so painful to write.

UsC


https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli

def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

.

if name == '__main

ro.parse ()

UsC


https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

if __ name_ == '_ main_ '
ro.parse ()
python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'

UsC


https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):

if name == main
ro.parse ()

python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'

@ro.experiment
def run_experiment (x=23, y=12.0, dataset='mnist'):

return result, data, attachments

UsC


https://github.com/tellapart/commandr

Command-Line Interface

The Problem: CLIs are great, but so painful to write.

@ro.cli
def run_experiment (x=23, y=12.0, dataset='mnist'):
pass

if name == '__main 3
ro.parse ()

python experiment.py run_experiment x 12 y 0.1 dataset 'cifar'

@ro.experiment
def run_experiment (x=23, y=12.0, dataset='mnist'):

return result, data, attachments

Thanks commandr for inspiration !

UsC


https://github.com/tellapart/commandr

CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

UsC



CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

python run_experiment \
——x=12 \
y=23 \

—-dataset="'mnist'

UsC



CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

ropt.py python run_experiment \
——x=12 \
y=23 \
—-dataset="mnist'

UsC



CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

ropt.py python run_experiment \
——x='G sian(0.0,0.1)" \

UsC



CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

_NSEARCH=120 ROPT_TYPE=Evolutionary ROP NAME='quadratic' ROPT_D
ropt.py python run_experiment \
sian(0.0,0.1)" \
"hoice ([-0.1,0.0,0.17)" \

——dataset="mnist'

UsC



CLI Hyperparams Search

The Problem: 1 script for experiment, 1 for hyperparameters search.

Using ropt .py we can generate commands for hyperparameter search.

_NSEARCH=120 ROPT_TYPE=Evolutionary ROPT_NAME='quadratic' ROPT_DIR='mydir'\
ropt.py python run_experiment \

——x='Gaussian(0.0,0.1)" \
——y="Choice([-0.1,0.0,0.1])" \
——-dataset="mnist'

python run_experiment --x 0.00213 --y -0.1 --dataset="'mnist'

python run_experiment --x 0.0361 --y -0.1 --dataset="'mnist'

python run_experiment --x -0.00887 --y 0.0 --dataset="mnist'

UsC



Attachments

The Problem: JSON Summaries aren't suited for large data results.

UsC



Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,
data={'convergence': mylist},

attachment={"'imac : large_image_list})

UsC



Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,
data={'convergence': mylist},
attachment={"'images': large_image_list})

result = next (exp.all())
result.attachment ['images']

UsC



Attachments

The Problem: JSON Summaries aren't suited for large data results.

exp.add_result (result,

data={"'convergen

: mylist},

attachment={"'images': large_image_list})

result = next (exp.all())
result.attachment ['images']

Attachments are

+ for anything that is not human readable,
* linked to a particular JSON Summary,

* serialized via cPickle,

* lazy-loaded upon first access.

UsC



Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.

UsC



Parallel Experiments

The Problem: My compute can handle more than 1 experiment at a time.

Solution: your favorite way of syncing a directory among computing nodes.

Some examples:

* single desktop machine: use multiple processes.
+ compute cluster: use a shared-memory node.
+ collaborators: use git/Dropbox synced folder.

Randopt does not impose constraint on the sharing strategy !

UsC



Even More Features

Features Not Covered

* Multi-Objective Optimization (ro.objectives)
* Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)

UsC



Even More Features

Features Not Covered

* Multi-Objective Optimization (ro.objectives)
* Plugins and Extensions (BayesOpt, Live Plotting, HO Monitoring)

Future Features

*+ Performance Improvements
*+ Debugging ML Models

* Fancier Built-in Visualizations
* Your biggest ML hurdle ?

UsC



Fin

Thank you'!

UsC


htpp://github.com/seba-1511/randopt

Fin

Thank you'!

Learn more at: github.com/seba-1511/randopt

y/seba—1 511 @seba—1 511.com gl? /seba-1511

UsC


htpp://github.com/seba-1511/randopt

