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Overview Use

Summary

e Replacing MC with RQMC accelerates learning and improves value estimation in RL.

Main Contributions

o We propose to combine policy gradients with randomized QMC.
o Retains flexibility of policy gradients (eg, continuous actions, non-linear policies, etc).
o Readily compatible with different policy gradient formulations (eg, actor-critic).

o Empirically, we show:
o RQMCimproves policy learning and evaluation, even for SOTA algorithms.
o RQMC reduces variance in gradients and policy values.
o RQMC complements other variance reduction techniques.




Background
Policy Gradients
o lterate: ™ <— m — NV E; o [Q7 (s, a)]
Randomized Quasi-Monte Carlo (RQMC)
Monte Carlo:
o Sample points u ~ U(0; 1) uniformly at random.

Quasi-Monte Carlo:

o Deterministically generate a low-discrepancy point set.

Randomized Quasi-Monte Carlo:

e Scramble & randomly shift a QMC point set to retain low-discrepancy.
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Policy Evaluation with RQMC
Goal
 Efficiently estimate: V7 = E; ,[Q" (s, a)]

Method

e Let a=n(s,u)=p(s)+o(s) ®F !(u), where u is an RQMC point.

Policy evaluation when approximating V'™ with:
C T N T B (G
o ExpectedReturns: V™ ~ & > [tho R(sg ), ag ))}
o  Sample trajectories, average sum of rewards.

e Learned Griticc V™ ~ E,, [% Zf\io Q™ (i, (S, ug)))}

o Sample states from buffer replay, average Q-values.
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Policy Learning with RQMC UsC

LQR
Goal w0 —— VPG (MC)
6 x 101 —— VPG (RQMC)
o Efficiently learn a policy: arg max, E; ,[Q™ (s, a)] o Ax 100
S3x10!
Method 210!
e Let a=m(s,u)=pu(s)+o(s) ®F~1(u), where uis an RQMC point. 000 095 080 075 100
e Learn with Steps te7
o  Expected Returns — Vanilla Policy Gradient (VPG) HalfCheetah-v3
o Learned Critic  — Soft Actor-Ciritic (SAC) 15000 |
12500 H
Experimental results 210000 -
2 7500 1 [
. o« —e— DDPG
o RQMC outperforms MC on all scenarios. 5000 1 —+— TD3
0 Signifi.cantly.improv.es learning with VPG. | 2500 1 D
o Combines with and improves upon SOTA algorithms. 0 : :
1 2 3

Steps le6



Analyses and Ablations

RQMC improves gradient estimation

e Why does RQMC improve upon MC?
o Hypothesis: variance reduction.
o Experiment:
o  Collect trajectories mid-training.
o Measure gradient variance and alignment.
o Results: 5x lower gradient variance.

RQMC combines with other variance reduction techniques

o Can RQMC complement other variance reduction techniques (VRTs)?
e Experiment:
o Compare MC with different VRT combinations.
o Results: RQMC further improves upon
= Control variates (CV)
» Accelerated SGD (ASGD)
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