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* Fundamental problem
e Always more Interesting tasks than training tasks.

Training
* Need: models that adapt quickly Tasks

* How to adapt!
* |nner workings of fast adaptation?
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* Part | — Meta-Learning to Adapt Fast
* When meta-learning falls... [AISTATS'19]
e ...and when It succeeds. [Arxiv2|]

O I - * Part [l — Fast Adaptation without Meta-Learning
Ut I n e * [ast finetuning with rewards and more. [In submission]

* Part lll — Meta-Learning with Many Tasks
* Picking the right tasks. [NeurlPs2|]
e Optimizing wrth many tasks. [NeurlPs'1 9]




Why meta-learning!?

e Definition

e « lLearn how to learn » from data.

 Core assumptions

* Designing inductive biases Is hard.

* [earning them from data Is easler.

e Success stories

~ew-shot iImage classification.
Veta-reinforcement learning.

°rompting large language models.
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Few-shot learning in a nutshell

* Motivation
* [earn on a large set of train tasks.

Quickly solve unseen test task with limited data.

* Few-shot image classification

* Support set
Query set t

e QOther flavors

* few-s
* few-s
e Few-s

NOL
NOL

—

NOt

%

for quickly solving the task.
o evaluate quality of solution.

N\

P

N

® fFei-Fei et dl, « One-Shot Learning of Object Categories », PAML 2006
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Model-Agnostic Meta-Learning ( )

* |ntuition
* Find that adapt quickly to any task
e Compatible with any task-objective L.

* |learning objective

min E, [£,(0")]

* Meta-training
e Sample a task 7, compute VoL (6"), and optimize 6 with SGD,

® Finn et al, « Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks », ICML 2017 6 157
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Model-Agnostic Meta-Learning (MAIML)

* |ntuition
* Find initial parameters that adapt quickly to any task.
e Compatible with any task-objective L.

* |learning objective

m@in - [L-(07)]

s.t. ' =60 —aVeLl,(0)

_

Learned initialization

* Meta-training
e Sample a task 7, compute VoL (6"), and optimize 6 with SGD,

® Finn et al, « Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks », ICML 2017 6 157



Meta-Learning to Adapt Fast



QO :What is meta-learned with MAML?

* Model setups
e Shallow: § = cx
* Deep: 9y =abx

Regression — Task | Regression — Task 2

e Both encode a linear function.

* Task setups
* Linear regression:

l 2
ET — i(y_yT)

where: ¢, y,,a,b,c € R
with:
o |0k(x,y,)samples,

e |000 tasks T,
e 2’s are constant across tasks.

... and for tasks 3 to 1,000.

® Reference: Arnold et al., « When MAML Can Adapt Fast and How to Assist When it Cannot », AISTATS 2021 8 /57



MAML fails on linear regression!?

Linear Regression MAML
* Model setups |
N == Shall
 Shallow: y = cx 1.0 Dezpow
* Deep: 9y =abx gOS
e BRoth encode a linear function. s
0.6
a
* Task setups 2‘? 0.4 -
* [inear regression: 7
1 & 0.2
L,==()—yr)
T 2 (y yT) 0.0 , ' '
0 290 500 750 1000
where: ,y,-,a,b,c € R lterations
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o |0k(x,y,)samples,

e |000 tasks T,

* I's are constant across tasks.

® Reference: Arnold et al., « When MAML Can Adapt Fast and How to Assist When it Cannot », AISTATS 2021 9 157
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Depth enables meta-learning

d 1 ,
e Shallow: 6’6 5 (CQ? — y) — XL
1
* Deep: 0 (&bCE o y)Z __ 7

0b 2
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Depth enables meta-learning

e Derivative of@linlear models
2

* Shallow: —_(cz —y)* = x
526 i 17 Same error terms
e Deep: = —y)? =
P e Y '

e Derivatives of non-linear models
* Forward pass: y = Wso(Wix)

e Backward pass:

11757
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The structure of MAML solutions

Omniglot MAML
Does our theory hold in practice? L N r
>
: s 0.8 -
* Experimental setup =
e Omnigloth: classity 1600+ characters. < 0.6
. . S —— Freezing-(only thi
 Meta-train a CNN until convergence. = eees Loy 'Sf)
s - Adapting-(only this)
804 -
. . S i
e Layerwise analysis <
* Freezing-X:only X is frozen (rest Is adapted). Al

* Adapting-X: only X is adapted (rest is frozen).

 —

=
o

® [:Lake et al, « Human-level concept learning through probabilistic program induction », Science 2015 12 /57



The structure of MAML solutions

o

Task-agnostic Task-specific Optimization
Parameters Parameters Parameters
Omniglot MAML
1.0 —
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The structure of MAML solutions
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The structure of MAML solutions

. _.@_.

_»@_»

.@_.

Task-agnostic
Parameters

Similar story holds across settings.

* Datasets
e Omniglot
* mini-ImageNet
e CIFAR-FS

e Architectures

e CNN
e CNN

e Res\

4
6
et9

® . Nichol et al,, « On First-Order Meta-Learning Algorithms », ArXiv 2018

Task-specific
Parameters

-(1)—

Optimization

Parameters

* Algorithms

MANM

Reptl

L
N
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Can linear layers improve meta-learning?

e CNN4
* 4x Conv + Ix FC
CNN2 w/ LinNet
* CNN2 - __ |l |
e Ix Conv + |IxFC . — () — _.@_.> .>_.>_.
e CNN2 w/ LinNet ) Original Network " Extra Liner Layers |
e J)x Conv + 3x FC for Modelling for Optimization

e No activations on last 2x FC!

15757
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Meta-Optimizer for faster adaptation

* How to bridge remaining |107%!

_inear layers = linear gradient trans

‘ormation.

Non-linear layers = cannot be colla

bsed = bloat.
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Meta-Optimizer for faster adaptation

* How to bridge remaining |107%!

CNN2 w/ LinNet

~

&

o B ) =>ﬁ

3

_inear layers = linear gradient transformation.
Non-linear layers =+ cannot be collapsed = bloat.

Original Network " Extra Liner Layers
for Modelling for Optimization
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Original Network
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NFE

— () — S RRE —
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CNN2

Meta-optimizer for faster adaptation

. . €T — () — () — . . _.
* How to bridge remaining |107%! W W ) ) ) /
* Linear layers = linear gradient transformation. gl N erk e ner Layer:

 Non-linear layers = cannot be collapsed = bloat.
* Meta-optimizers
. ~ /
min E,[L£-(6")] CNN2

0,

s.t. ' =60 — x_*F'*@*ﬁ.

~@~>~g

|

Neural network U,g

Original Network
for Modelling

Parameterized by &
VoLl (0)—1=| ¢

— ) —

NS

1 UE (VHLT (‘9))

Meta-Optimizer
for Optimization
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Meta-KFO further bridges the shallow-deep gap
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mini-lImageNet
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Meta-KFO further bridges the shallow-deep gap

MAML MAML MAML MAML MAML
w/ w/ w/ w/ w/
LinNet MSGD MC T-Nets KFO

MAML
(CNN2)

CIFAR-FS 62.2% 66.1% 62.8% 68.4% 66.4% 69.6%

52.6% 60.5% 59.9% 58.9% 58.5% 59.1%

66.8% 88.1% 74.1% 94.6% 92.3%

e —
Recover 30% w/ KFO

mini-lImageNet

Omniglot

Only 2% degradation & no bloat!
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Preview: scaling meta-optimizers to large language models

* How to scale-up meta-optimizers to modern LLMs?
MNLI — S5T2 T5-XL

1.0
* |nsight: NLP is « text-in, text-out »

* language model: inductive bias for language generation.
e Meta-optimizer: inductive bias for fast-adaptation.

=
O

* Setup
* (ollect prompt-tuning parameter trajectories.
* J[rain-time: meta-optimizer learns to fast-forward trajectories.

Accuracy
-
QO

Adafactor (Train)
* Adafactor (Eval)

0.7 1 _
e Jest-time: use meta-optimizer to finetune on unseen task. = MELODI (Train)
—s=+ MELODI (Eval)
* Results 0 ' ' '
| 1.100o0 1.1010 1.1015 1.1020
e MELODI is 8x faster than Adafactor on (unseen) SST2 tasks. T5 Training Steps  x10°

® Work in progress. With: Ice Pasupat, Vincent Zhao, Kelvin Guu, and Fei Sha. 20/ 57
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Q2:When is adaptation required?

* Motivation
* Recent papers suggests we don't need adaptation.

* Much simpler recipe:

* Pretrained representations.
* Nearest-centroid classification.

 Core question
* When do we need to adapt representations!?

® Reference: Arnold & Sha, « Embedding Adaptation is Still Needed for Few-5Shot Learning », ArXiv 202 |

Test Tasks are Easy

¢y 9 ‘

: 7

A

0

Test Tasks are Hard

21 157



Prototypical Networks (ProtolNet)

e Method
* « Nearest-centroid classification in learned embedding space. »

e Pseudo-code;

. Embed all support sample = as ¢(x).
2. Compute mean embedding for each class.

3. Classify query sample &’ as nearest centroid.

p(y = ¢; | x = 2') = softmax., (¢(z') ' ¢;))
where c¢; = A Z o(x)

* Extensions
e MetaOptNet, SimpleShot, DeepEMD, Proto-NCA, ...

® Snell et al, « Prototypical Networks for Few-Shot Learning », NeurlPS 2017 22 /57



Contrasting ProtoNet and MAML

= Training
---- Adaptation
()
VLs
VL ,
VEl 2/,0 ¢3 (33)
H(x)e" ()
* Transfer Algorithms * Adaptation Algorithms
e Jask-agnostic data representations. * Jask-specific data representations.
* Etxample: ProtoNet. * Example: MAML.

23 /57



Transfer v.s. Adaptation

CIFAR-FS
S5-ways 5-ways
1-shot 5-shots

* Empirical study
* Archrtecture: 4-layer CNIN.
 Dataset: CIFAR-FS & mini-ImageNet.

* Metrics: accuracy & confidence intervals.

ProtoNet 57.9% 038 76.7% 0.6

MAML 53.8% +1.8 67.6% 1.0

* Results mini-lImageNet
* ProtoNet outperforms MAML. 5-ways 5-ways
* 12-9% absolute improvement seems significant. 1-shot 5-shots

* Why is transfer so effective? ProtoNet | 42.9% 06  65.9% 06

MAML 40.9% +15 58.9% +0.9

® Results from Bertinetto et al, « Meta-Learning with Differentiable Closed-Form Solvers », ICLR 2019 24 /57



A few caveats in the comparisons

Class Distributions

* Where did our train and test tasks come from?
e (lasses randomly assigned to train or test splits.

* Underlying assumptions?
 No distribution shift between train and test classes.
* J[rain and test classes semantically closely related.

* More thorough studies with alternative splits

e (Can we use semantic iInformation?
* Expensive = What If no semantics!

 (an we train on dataset X and test on Y?
* |stransfer easy or hard?! How to tell? Train Classes

Test Classes

25157



Automatic Taskset Generation (AT ()

coe W, oo t] coe P o "';\-"'E"'ﬁs

e QOverview

e Embed classes with trained feature extractor
. to divergence constraint.

e (luster, subjec

Class Embeddings

Test Tasks are Easy
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ng to clusters’ likelihood.
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Automatic Taskset Generation (AT ()
oo uy oo [Meee @poce W dgee D™

2 i y

Class Embeddings Pi X,y [¢( )]
Y=Y
Test Tasks are Easy Test Tasks are Hard
Q4 (@ (:)9. >
Small D(p,ninll i) *br . Large D(piinll o)
@1 01® @3 .@6

e Overview
e Embed classes with trained feature extractor.
e (luster, subject to divergence constraint.
* Assign according to clusters’ likelihood. S.t. D(Ptrain”Ptest) = R

Z log Ptrain (Cz) + Ptest (Cz))

ptra.ln yPtest

26 /57



Automatic Taskset Generation (AT ()

coo M) oo u oo g... ...h...@...&

v I E

Class Embeddings Pi = yé% [¢(x)]
Test Tasks are Easy Test Tasks are Hard
ol Small D(painll i) bio *or . . Large D(p..;.|| )
¢ ' Ds >
og® * 95
e Qverview ¢ Desiderata
e Embed classes with trained feature extractor e Automatic v
e (luster, subject to divergence constraint. e No human knowledge v
* Assign according to clusters’ likelihood. * Control over train-test task difficulty v

Ptrain,Ptest

max Z log(ptrain (Cz) T Dtest (c’i ))

s.t. D(ptraiantest) =R
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Making train and test tasks more different

o Setup CIFAR100
 (Senerate tasksets for various R. -8 1 ~ "
* Measure classification accuracy. *
e Re-trained feature extractor ¢(x). >0.7
* ProtoNet (nearest centroid). g |
O -
e Results a == \
* [rain-to-test task difficulty increases. he ¥
* [rue across datasets.

* Incl. EMNIST & Labelled Faces in the Wild (LFW10) with no semantics! 0.0 0.5 1.0
D(ptrain ‘ |ptest)

Train Tasks Validation Tasks Test Tasks
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Making train and test tasks more different Higher train accuracy

Lower test accuracy

. Setup CIFAR100
e (Generate tasksets for various R. 0.8 - e —o—o—
* Measure classification accuracy. ;
* Re-trained feature extractor ¢(x). > 0.7
* ProtoNet (nearest centroid). g
O
O
* Results < .
* J[rain-to-test task difficulty increases. .
* [rue across datasets.

* Incl. EMNIST & Labelled Faces in the Wild (LFW10) with no semantics! 0.0 0.5 1.0
D(ptrain ’ |ptest)

® Train Tasks Validation Tasks v Test Tasks
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Making train and test tasks more different

mini-ImageNet tiered-ImageNet
_ 0.950 {, =
L
0.9 1¢ 0.925
> ' 0.900
¢ Setup 3 0.8 & .
e (Generate tasksets for various R. S0l < e

* Measure classification accuracy. \ 0.825 \

e Re-trained feature extractor ¢(x).

o
o

0.0 0.5 1.0

* ProtoNet (nearest centroid). R, R DiPrain | | Pres)
LFW10 EMNIST
e Results 100 je—e ¢ | e 1 .
* [rain-to-test task difficulty increases. 005
—_ > >
* [rue across datasets. 3 g 9%
* Incl. EMNIST & Labelled Faces in the Wild (LFW [0) with no semantics! &> g
0.85 ! < w
. . . 0.90 1 . '
0.0 0.5 1.0 0.0 0.5 1.0
D(ptrain‘ ’ptest> D(ptrain| ‘ptest)
® Train Tasks Validation Tasks Test Tasks
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Transfer v.s. Adaptation — Redux

CIFAR-FS — Hard

* Empirical study o-ways O-ways
e ProtoNet v.s. MAML, again. -shot >-shots
e Hardest ATG splits for CIFAR-FS and mini-ImageNet. ProtoNet | 35.6% 102 50.5% s03

D(ptrain || Prest) = 0.96

MAML 35.9% 0.3 55.7% +05

* Results
* MAML outperforms ProtoNet by 2-5%.
* Opposite outcome of original tasksets. mini-ImageNet — Hard
S5-ways S5-ways
e |ntuition 1-shot 5-shots
* [rain = test:transfer is enough. ProtoNet | 41.8% 06  60.4% <04
* J[rain # test: adaptation Is required.

MAML 44.9% 0.8 62.3% 1.0
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Take-aways — Part |

: How to adapt fast!?
Freeze task-agnostic parameters; learn optimization parameters.

:When is adaptation required!?
When the new tasks are different from train tasks.
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Q3: How to adapt quickly with reinforcement learning?

e Downsides of MAML

* Expensive pretraining: memory and compute.
* |ncompatible with pretrained models.

* |deal scenario
* Download off-the-shelf pretrained model.
* Quickly solve new tasks as if trained with MAML.

 Core question
* How to quickly adapt pretrained representations!?

® Reference: Arnold & Sha, « Policy-induced self-supervision improves representation finetuning in visual RL », In submission
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Case study: visual reinforcement learning

e Visual RL

e (lven visual observations, take actions that maximize rewards.
e (hallenge: noisy learning signal.

 Testbed |:Habitat Al
* Pretraining: classify ImageNet images.
* Downstream: robot navigates from camera and GPS observations.

VT e P e i e A R et - TR
R R T\ R BB il =
S - = T . ’

Object Navigation

T

3
:

it Finetune

"Go to toilet"

® Szot et al, « Habitat 2.0: Iraining Home Assistants to Rearrange their Habitat », NeurlPS 202 | 35/57
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Running simple baselines

Downstream learning setup

e Policy and value heads learned on top of features.

e [eatures:
De Novo Frozen Finetuned
Initialization Random Pretrained Pretrained
Finetuned v X v
Results

* Finetuned struggles to outperform Frozen.

SPL (1 better)

0.8

0.6 -

0.4 -

0.2 -

0.0

Matterport3D

Habitat

De Novo

-rozen

0.00

—%— Finetuned A
0.25 0.50 0.75 1.00
Steps x 107
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A page from the MAML textbook

 Can we identify and freeze task-agnostic layers? Matterport3D Habitat
* Yes, with a little expert data. )-8
* |dea: measure how well each layer can predict Q-values.
06 -
* Frozen+tFinetuned %
* |nitialization: pretrained = 04 - M
* J[ask-agnostic layers: frozen E —e— De Novo
* Task-specific layers: finetuned 09 - —#— Frozen
—¥— iinetuned. A
e Results . | -rlozen+f|:etuned
* Frozen+Finetuned significantly stabilizes finetuning. 000 095 050 075 1.00
Steps x 107
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A page from the MAML textbook

 Can we identify and freeze task-agnostic layers? Matterport3D Habitat
* Yes, with a little expert data. )-8
* |dea: measure how well each layer can predict Q-values.
06 -
* Frozen+Finetuned %
* |nitialization: pretrained = 04 - M
* J[ask-agnostic layers: frozen E —e— De Novo
* Task-specific layers: finetuned 09 - —#— Frozen
—¥— iinetuned. A
e Results . | -rlozen+f|:etuned
* Frozen+Finetuned significantly stabilizes finetuning. 000 095 050 075 1.00

Steps x 107

e Can we improve further!?

38157



Fast-adaptation inductive biases for RL with MSR Jump

 Testbed 2: MSR Jump
e agent
mp over

Pretraining: whr

Downstream: |u

Task

[ ]
I

Floor: |5

Posit

ion: 20

OOX (/5 pretraining tasks).

box positions (/5 evaluation tasks).

|1
Task 2
Floor: | 5

Position: 30

|1
Task 3
Floor: | 5

Posrtion: 40

|1
Task 4
Floor: | 5

Posrtion: 50

I
Task 5
Floor: |5

Posrtion: 60
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Fast-adaptation inductive biases for RL with MSR Jump
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e agent
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Downstream: |u

Task

[ ]
I

Floor: |5
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|1
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|1
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Fast-adaptation inductive biases for RL with MSR Jump

 Testbed 2: MSR Jump

* Pretraining: white agent OoX (/5 pretraining tasks).
* Downstream: jump over box positions (/5 evaluation tasks).
v [ Jump, if < 14
T 13 . .
\Move right, otherwise.

Obstacle y Coordinate

Obstacle x Coordinate

>
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A failure mode for transfer in RL
Frozen fails on Jump!?

Evaluation Tasks  MSR Jump

* Setup
. 80 -
* Run our baselines on MSR Jump.
8 70
e Results ©
* Frozen features underperform De Novo finetuning. 60 - e N
n € INOVO
Kt ——
§ —#—  Frozen
* What is wrong with Frozen features? 2 90 - —¥— Finetuned
—+—  Frozen+Finetuned
40 === Upper Bound
0 2 4
Steps x 107

41 157



Are Frozen features informative enough?

* Setup
|. Collect optimal trajectories. O Evaluation Tasks o MSR Jump
2. Measure quality of Frozen / Finetuned features: | s
: : = 0
* Regress optimal actions (Accuracy). 3 0.8 0.8
)
e Regress distance to box (MSE). il S
— 0.6 i 0.6
>
O c
© S
e Results <E§0.4 : ® (0.4 -
* Perfect action accuracy (100%). = H
- - S . 0.2 3 0.2
* Perfect distance estimation (sub-pixel). g =
0.0 A 0.0
* Yes, pretrained features are informative enough. @O@\ &
S
* What makes finetuned features so good? <

42 /57



Good features are robust to noise

e Setup Evaluation Tasks  MSR Jump
|, Collect optimal trajectories. ~ o
2. Regress optimal actions from noisy features. = —
. . 2
3. Measure classification error, N -
: : 102
4, Repeat for a different noise level. 5 10
1]
g '/
e Results B 1077 x
. O —I— Random
* Adapted features degrade slower than pretrained ones. = )
o —z— -rozen
. . . O 10~ —¥— Finetuned
* |dea |:enforce noise robustness while finetuning. | |
0 5 10

Noise Magnitude

43 /57



Good features ease decision making

* Setup Evaluation Tasks  MSR Jump
e Collect optimal trajectories. 1.0
e (Compute features for all observations. .
: o 0.8
e Measure cluster purity. £
* (lven 5 nearest neighbors, how many induce the same optimal action? i 06
\-I; .
* Results E
. . n 04 -
* Finetuned features yield purer clusters. .
%
=
- - - o -2
* |dea 2: ensure similar states lead to similar policies.
0.0

44 157



Policy-induced self-consistency objective ( )

Data
Augmentation 1’

|

I e 2 (10

Data
Augmentation [’

—> S1— Encoder ¢ — 21 I

(- p1)> + KL (L(w(- | 21))

(| pa))
)

— 82 — Encoder q5 e Z2 — PrOjeCtOr h — p2

Policy-induced self-supervision
Recipe: PiISCO with SimSiam

L0130 = 3 . (D(z1,p2) + D(z2,p1)) |, Sample state s from replay BB
s~B _2 | .
s1,82~T(|s) 2. Augment s Into S1, So.
3. Compute SIimSiam objective with
where D(z,p) = KL (L (7(- | 2)) || 7(- | p)) KL of induced policy (not L2-norm).

® Chen & He, « Exploring Simple Siamese Representation Learning », CVPR 2021 45157



PiSCO accelerates RL finetuning

e Frozen+PiSCO

* |nitialization: pretrained.
e Jask-agnostic layers: frozen.

e Jask-specific layers: PISCO.

Results
e PISCO accelerates RL finetuning on Jump and Habitat.

Evaluation Tasks  MSR Jump

s e e e e e e o e e e R e T S o S S Y B s —

—&— De Novo

—%— Frozen

—%¥— Finetuned

—+—  Frozen—+Finetuned

~rozen-+-PiSCO
=== Upper Bound

2 4
Steps x 107
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PiSCO accelerates RL finetuning

Matterport3D Habitat
* Frozen+PiSCO 0.8
* |nitialization: pretrained.
e Jask-agnostic layers: frozen. 0.6 -
e Task-specific layers; PISCO. 8
s M R\
~ 04 - o D
~ e Novo ) |
e Results - ‘ -
| . | ~ f —¥— Frozen
* PISCO accelerates RL finetuning on Jump and Habitat. 2 —¥— Finetuned
, —#— Frozen+Finetuned
® Take_awa)/ -rozen+PiSCO h

* Finetuning works better with RL-specific inductive biases. 0.0 ’ ’ |
0.00 025 050 075  1.00

Steps x 10"

47 157



Take-aways — Part |l

: How to adapt fast!?
Freeze task-agnostic parameters; learn optimization parameters.

:When is adaptation required!?
When the new tasks are different from train tasks.

: How to adapt quickly with reinforcement learning!?

Freeze task-agnostic parameters; finetune with a policy-induced object

ve,

48 [ 57



Meta-Learning with Many lasks



Q4: How to choose training tasks!?

BASELINE EASY

HARD

* Change of assumptions
* What It we get to pick which task to train on?

e Motivation

* Streaming v.s. offline tasksets. et it

CURRICULUM UNIFORM

* Some tasks are more informative.
* « Does sampling even matter in few-shot learning? » —

* Core question

* How to sample tasks for best test accuracy! Dty Dty

® Reference: Arnold et al, « Uniform Sampling over Episode Difficulty », NeurlPS 2021 (Spotlight)

Difficulty

Which
IS
Best?

501757



Sampling matters for episodic training

e Compare 5 candidate distributions on:

e 2 architectures: CNN4, ResNet| 2.

e 4 algorithms: MAML, ANIL, ProtoNet (Euclidean & Cosine).
e ) datasets: mini-ImageNet, tiered-ImageNet.

* ) settings: 5>-ways |-shot & 5-shots.

Results
 Uniform sampling dominates, Baseline second best.

# Scenarios Among Best Samplers

24 Few-Shot Scenarios

19.00

511757



Q5: How to optimize with many tasks!?

* Motivation
* mini-ImageNet = [0!%2 different tasks.
* Joint training over all tasks Is intractable.
* Solution: sample tasks one at a time.

* Issue:the memoryless SGD
* Immediately discards gradients after they are used

* Core question
* How do we reuse information seen in previous tasks?

® Reference:Arnold et al, « Reducing the variance in online optimization by transporting past gradients », NeurlPS 2019 (Spotlight) 52 157



Q5: How to optimize with many tasks!?

* Motivation
* mini-ImageNet = [0!%2 different tasks.
* Joint training over all tasks Is intractable.
* Solution: sample tasks one at a time.

* Issue:the memoryless SGD
* Immediately discards gradients after they are used

* Core question
* How do we reuse information seen in previous tasks?
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IGT improves meta-learning

MAML
* Setup
e MAML on mini-lImageNet, 5 adaptation steps.
* S-ways >-shots tasks. 000
* Only replace the task-level optimizer: go o
* [ast adaptation with SGD. é |
e Meta-learning with IGT. b —— HB
0.50 —— Adam
e Results — HB-IGT
e |GT optimizers improve upon Heavyball and Adam. 045 — Adam-GT

0.00 0.25 050 0.75 1.00
lterations 1le5

531757



Take-aways — Part |

: How to adapt fast!?
Freeze task-agnostic parameters; learn optimization parameters.

:When is adaptation required!?
When the new tasks are different from train tasks.

: How to adapt quickly with reinforcement learning!?
Freeze task-agnostic parameters; finetune with a policy-induced objective.

: How to choose training tasks!?
Sample them uniformly over difficulty.

: How to optimize with many tasks?
Retain the information from tasks prior tasks.

54157



Papers in this thesis

: « When MAML Can Adapt Fast and How to Assist When it Cannot »
5. M. R Arnold, 5. Igbal, and F. Sha.

: « Embedding Adaptation is Still Needed for Few-Shot Learning »
5. M. R Arnold and F. Sha.

: « Policy-Induced Self-Supervision Improves Representation Finetuning in Visual RL »
5. M. R Arnold and F. Sha.

: « Uniform Sampling over Episode Difficulty »
5. M. R Arnold*, G. S. Dhillon* A. Ravichandran, and S. Soatto.

: « Reducing the Variance in Online Optimization by Transporting Past Gradients »
5. M. R Arnold, P-A. Manzagol, R. Babanezhad, |. Mitliagkas, N. Le Roux.
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Papers not in this thesis S
g - 0.11 ]

e « Policy Learning and Evaluation with RQMC » . §§§ :
e 5. M.R Arnola, P L'Ecuyer, L. Chen, Y-F. Chen, and F. Sha. AISTATS, 2022. . Jles (

e Replaces Monte Carlo sampling with Randomized Quasi-Monte Carlo in RL. : s

Randomized QMC

1011

* « Analyzing the Variance of Policy Gradient Estimators for the LQR » 10
* | A Preiss* 5. M. R Arnold* C-Y.Wei* and M. Kloft. NeurlPS 2019. § \/
* Derives bounds for the variance of REINFORCE on LOR. - 12 \/_ o

1072 1071 100 101 102
Oj

* « learn2learn:A Library for Meta-Learning Research »
* 5. M.R Arnold, B Mahajan, D. Datta, |. Bunner, and K. 5. Zarkias. ArXiv Preprints, 2020.

e Software package, 2/ contributors, 2.1k 4 on GirtHub. -
learn learn
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Outlook

* A theory for meta-optimization
e Scalable meta-optimizers.
 Meta-overfitting, meta-augmentation, meta-bias, ...
* Emergence of optimization parameters.

* Defining and measuring task similarity
 Data, model, and learning algorithm = establish guidelines for practitioners.

e For RL tasks!

* Analyses grounded in real-world tasks
* No real-world task today!

« Only experiments with real Creatures in real worlds can answer the natural doubts about our approach. »
R.A. Brooks. Intelligence without representation. Al'9 |.
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