Quickly solving new tasks

with meta-learning and without

December 5, 2022

How to quickly solve new tasks?

- How do we get personalized models for
 - Education?
 - Agriculture?
 - Code?
 - Skiing?

Artwork by DALL-E 2

How to quickly solve new tasks?

- How do we get <u>personalized</u> models for
 - Education?
 - Agriculture?
 - Code?
 - Skiing?
- Fundamental problem
 - Always more interesting tasks than training tasks.

How to quickly solve new tasks?

- How do we get <u>personalized</u> models for
 - Education?
 - Agriculture?
 - Code?
 - Skiing?
- Fundamental problem
 - Always more interesting tasks than training tasks.
- Need: models that adapt quickly
 - How to adapt?
 - Inner workings of fast adaptation?

Outline

- Part I Meta-Learning to Adapt Fast
 - When meta-learning fails... [AISTATS'19]
 - ...and when it succeeds. [ArXiv'21]
- Part II Fast Adaptation without Meta-Learning
 - Fast finetuning with rewards and more. [In submission]
- Part III Meta-Learning with Many Tasks
 - Picking the right tasks. [NeurlPS'21]
 - Optimizing with many tasks. [NeurIPS'19]

Why meta-learning?

Definition

« Learn how to learn » from data.

Core assumptions

- Designing inductive biases is hard.
- Learning them from data is easier.

Success stories

- Few-shot image classification.
- Meta-reinforcement learning.
- Prompting large language models.

Image Classification

Robotics Control

Why meta-learning?

Definition

« Learn how to learn » from data.

Core assumptions

- Designing inductive biases is hard.
- Learning them from data is easier.

Success stories

- Few-shot image classification.
- Meta-reinforcement learning.
- Prompting large language models.

Image Classification

Robotics Control

Few-shot learning in a nutshell

Motivation

- Learn on a large set of train tasks.
- Quickly solve unseen test task with limited data.

Few-shot image classification

- Support set for quickly solving the task.
- Query set to evaluate quality of solution.

Other flavors

- Few-shot RL
- Few-shot NLP
- Few-shot [X]

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

$$\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right]$$

s.t.
$$\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$$

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

$$\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right]$$

s.t.
$$\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$$

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

$$\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right]$$
s.t. $\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

$$\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right]$$
s.t. $\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$

Adapted parameters

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

 $\min_{\theta} \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right]$
s.t. $\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$

Adapted parameters

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .
- Learning objective

$$\begin{aligned} & \underset{\theta}{\min} & \mathbb{E}_{\tau} \left[\mathcal{L}_{\tau}(\theta') \right] \end{aligned}$$
 s.t. $\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau}(\theta)$

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.

- Intuition
 - Find initial parameters that adapt quickly to any task.
 - Compatible with any task-objective \mathcal{L}_{τ} .

- Meta-training
 - Sample a task τ , compute $\nabla_{\theta} \mathcal{L}_{\tau}(\theta')$, and optimize θ with SGD.
- Finn et al., « Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks », ICML 2017

Meta-Learning to Adapt Fast

Part I

Q:What is meta-learned with MAML?

Model setups

- Shallow: $\hat{y} = cx$
- Deep: $\hat{y} = abx$
- Both encode a linear function.

Task setups

• Linear regression:

$$\mathcal{L}_{\tau} = \frac{1}{2}(\hat{y} - y_{\tau})^2$$

where: $x, y_{\tau}, a, b, c \in \mathbb{R}$

with:

- IOk $(x,y_ au)$ samples,
- 1000 tasks τ ,
- x's are constant across tasks.

... and for tasks 3 to 1,000.

MAML fails on linear regression?

Model setups

• Shallow: $\hat{y} = cx$

• Deep: $\hat{y} = abx$

• Both encode a linear function.

Task setups

• Linear regression:

$$\mathcal{L}_{\tau} = \frac{1}{2}(\hat{y} - y_{\tau})^2$$

where: $x, y_{\tau}, a, b, c \in \mathbb{R}$ with:

- IOk $(x,y_{ au})$ samples,
- 1000 tasks au,
- x's are constant across tasks.

MAML fails on linear regression?

Model setups

• Shallow: $\hat{y} = cx$

Deep: $\hat{y} = abx$

Both encode a linear function.

Task setups

Linear regression:

$$\mathcal{L}_{\tau} = \frac{1}{2}(\hat{y} - y_{\tau})^2$$

where: $x, y_{\tau}, a, b, c \in \mathbb{R}$ with:

- $10k(x, y_{\tau})$ samples,
- 1000 tasks au,
- x's are constant across tasks.

Shallow fails; Deep succeeds

MAML fails on linear regression?

Model setups

• Shallow: $\hat{y} = cx$

Deep: $\hat{y} = abx$

Both encode a linear function.

Task setups

Linear regression:

$$\mathcal{L}_{\tau} = \frac{1}{2}(\hat{y} - y_{\tau})^2$$

where: $x, y_{\tau}, a, b, c \in \mathbb{R}$ with:

- $10k(x, y_{\tau})$ samples,
- 1000 tasks τ ,
- x's are constant across tasks.

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx - y)^2 = (cx - y)x$$

• Deep:
$$\frac{\partial}{\partial b} \frac{1}{2} (abx - y)^2 = (abx - y)ax$$

• Shallow:
$$\frac{\partial}{\partial c}\frac{1}{2}(cx-y)^2=(cx-y)x$$
 • Deep:
$$\frac{\partial}{\partial b}\frac{1}{2}(abx-y)^2=(abx-y)ax$$
 Same error terms

• Deep:
$$\frac{\partial}{\partial h} \frac{1}{2} (abx - y)^2 = (abx - y)ax$$

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx-y)^2 = (cx-y)x$$

$$\frac{\partial}{\partial b} \frac{1}{2} (abx-y)^2 = (abx-y)ax$$

Same error terms

Extra degree of freedom (learnable!)

- Derivative of linear models

 - Shallow: $\frac{\partial}{\partial c} \frac{1}{2} (cx y)^2 = (cx y)x$ Deep: $\frac{\partial}{\partial b} \frac{1}{2} (abx y)^2 = (abx y)ax$

Same error terms

Extra degree of freedom (learnable!)

- Derivatives of non-linear models
 - Forward pass: $\hat{y} = W_2 \sigma(W_1 x)$
 - Backward pass:

Derivative of linear models

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx - y)^2 = (cx - y)x$$

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx - y)^2 = (cx - y)x$$
• Deep:
$$\frac{\partial}{\partial b} \frac{1}{2} (abx - y)^2 = (abx - y)ax$$

Same error terms

Extra degree of freedom (learnable!)

Derivatives of non-linear models

• Forward pass:
$$\hat{y} = W_2 \sigma(W_1 x)$$

• Backward pass:
$$\frac{\partial \mathcal{L}_{\tau}}{\partial W_{1}} = \frac{\partial \mathcal{L}_{\tau}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_{1}} \cdot \frac{z_{1}}{W_{1}}$$
$$= \frac{\partial \mathcal{L}_{\tau}}{\partial \hat{y}} \cdot W_{2} \cdot \frac{z_{1}}{W_{1}}$$

Derivative of linear models

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx - y)^2 = (cx - y)x$$

• Shallow:
$$\frac{\partial}{\partial c} \frac{1}{2} (cx - y)^2 = (cx - y)x$$
• Deep:
$$\frac{\partial}{\partial b} \frac{1}{2} (abx - y)^2 = (abx - y)ax$$

Derivatives of non-linear models

• Forward pass: $\hat{y} = W_2 \sigma(W_1 x)$

• Backward pass:
$$\frac{\partial \mathcal{L}_{\tau}}{\partial W_{1}} = \frac{\partial \mathcal{L}_{\tau}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_{1}} \cdot \frac{z_{1}}{W_{1}}$$
$$= \frac{\partial \mathcal{L}_{\tau}}{\partial \hat{y}} \cdot W_{2} \cdot \frac{z_{1}}{W_{1}}$$

Same error terms

Extra degree of freedom (learnable!)

Does our theory hold in practice?

Experimental setup

- Omniglot!: classify 1600+ characters.
- Meta-train a CNN until convergence.

Layerwise analysis

- Freezing-X: only X is frozen (rest is adapted).
- Adapting-X: only X is adapted (rest is frozen).

Similar story holds across settings.

- Datasets
 - Omniglot
 - mini-ImageNet
 - CIFAR-FS

- Architectures
 - CNN4
 - CNN6
 - ResNet9

- Algorithms
 - MAML
 - Reptile¹

- CNN4
 - 4x Conv + Ix FC
- CNN2
 - 2x Conv + 1x FC
- CNN2 w/ LinNet
 - 2x Conv + 3x FC
 - No activations on last 2x FC!

- CNN4
 - 4x Conv + 1x FC
- CNN2
 - 2x Conv + 1x FC
- CNN2 w/ LinNet
 - 2x Conv + 3x FC
 - No activations on last 2x FC!

CNN2	w/ LinNet
Conv Conv	FC FC FC
Original Network for Modelling	Extra Liner Layers for Optimization

	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet
CIFAR-FS	70.9%	62.2%	66.1%
mini-ImageNet	64.1%	52.6%	60.5%
Omniglot	98.5%	66.8%	88.1%

- CNN4
 - 4x Conv + 1x FC
- CNN2
 - 2x Conv + 1x FC
- CNN2 w/ LinNet
 - 2x Conv + 3x FC
 - No activations on last 2x FC!

	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet		
CIFAR-FS	70.9%	62.2%	66.1%		
mini-ImageNet	64.1%	52.6%	60.5%		
Omniglot	98.5%	66.8%	88.1%		
30%+ degradation due to shallow					

- CNN4
 - 4x Conv + 1x FC
- CNN2
 - 2x Conv + 1x FC
- CNN2 w/ LinNet
 - 2x Conv + 3x FC
 - No activations on last 2x FC!

	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet
CIFAR-FS	70.9%	62.2%	66.1%
mini-ImageNet	64.1%	52.6%	60.5%
Omniglot	98.5%	66.8%	88.1%
30%+ degradation due to shallow			Recover 20%+ with linear layers

- How to bridge remaining 10%?
 - Linear layers → linear gradient transformation.
 - Non-linear layers → cannot be collapsed → bloat.

- How to bridge remaining 10%?
 - Linear layers → linear gradient transformation.
 - Non-linear layers \rightarrow cannot be collapsed \rightarrow bloat.

- How to bridge remaining 10%?
 - Linear layers → linear gradient transformation.
 - Non-linear layers \rightarrow cannot be collapsed \rightarrow bloat.

- How to bridge remaining 10%?
 - Linear layers → linear gradient transformation.
 - Non-linear layers \rightarrow cannot be collapsed \rightarrow bloat.

for Optimization

- How to bridge remaining 10%?
 - Linear layers → linear gradient transformation.
 - Non-linear layers \rightarrow cannot be collapsed \rightarrow bloat.

Meta-optimizers

$$\min_{\theta,\xi} \mathbb{E}_{\tau}[\mathcal{L}_{\tau}(\theta')]$$
s.t. $\theta' = \theta - U_{\xi}(\nabla_{\theta}\mathcal{L}_{\tau}(\theta))$

Neural network U_{ξ} Parameterized by ξ

	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet	MAML w/ MSGD	MAML w/ MC	MAML w/ T-Nets	MAML w/ KFO
CIFAR-FS	70.9%	62.2%	66.1%	62.8%	68.4%	66.4%	69.6%
mini-ImageNet	64.1%	52.6%	60.5%	59.9%	58.9%	58.5%	59.1%
Omniglot	98.5%	66.8%	88.1%	74.1%	94.6%	92.3%	96.6%

Prior results MAML MAML **MAML** MAML MAML MAML w/ w/ w/ w/ w/ LinNet MSGD MC T-Nets KFO 66.1% 70.9% 62.2% 62.8% CIFAR-FS 68.4% 66.4% 69.6% mini-ImageNet 64.1% 52.6% 60.5% 59.9% 58.9% 58.5% 59.1% 66.8% 88.1% 74.1% Omniglot 94.6% 92.3% 96.6%

		Prior results		Baselines w/ optim. parameters			
	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet	MAML w/ MSGD	MAML w/ MC	MAML w/ T-Nets	MAML w/ KFO
CIFAR-FS	70.9%	62.2%	66.1%	62.8%	68.4%	66.4%	69.6%
mini-ImageNet	64.1%	52.6%	60.5%	59.9%	58.9%	58.5%	59.1%
Omniglot	98.5%	66.8%	88.1%	74.1%	94.6%	92.3%	96.6%

	_	Prior results		Baselines w/ optim. parameters		rameters K	FO results
	MAML (CNN4)	MAML (CNN2)	MAML w/ LinNet	MAML w/ MSGD	MAML w/ MC	MAML w/ T-Nets	MAML w/ KFO
CIFAR-FS	70.9%	62.2%	66.1%	62.8%	68.4%	66.4%	69.6%
mini-ImageNet	64.1%	52.6%	60.5%	59.9%	58.9%	58.5%	59.1%
Omniglot	98.5%	66.8%	88.1%	74.1%	94.6%	92.3%	96.6%

Recover 30% w/ KFO

Only 2% degradation & no bloat!

Preview: scaling meta-optimizers to large language models

- How to scale-up meta-optimizers to modern LLMs?
- Insight: NLP is « text-in, text-out »
 - Language model: inductive bias for language generation.
 - Meta-optimizer: inductive bias for fast-adaptation.

Setup

- Collect prompt-tuning parameter trajectories.
- Train-time: meta-optimizer learns to fast-forward trajectories.
- Test-time: use meta-optimizer to finetune on unseen task.

Results

MELODI is 8x faster than Adafactor on (unseen) SST2 tasks.

Preview: scaling meta-optimizers to large language models

- How to scale-up meta-optimizers to modern LLMs?
- Insight: NLP is « text-in, text-out »
 - Language model: inductive bias for language generation.
 - Meta-optimizer: inductive bias for fast-adaptation.

Setup

- Collect prompt-tuning parameter trajectories.
- Train-time: meta-optimizer learns to fast-forward trajectories.
- Test-time: use meta-optimizer to finetune on unseen task.

Results

MELODI is 8x faster than Adafactor on (unseen) SST2 tasks.

Q2:When is adaptation required?

Motivation

- Recent papers suggests we don't need adaptation.
- Much simpler recipe:
 - Pretrained representations.
 - Nearest-centroid classification.

Core question

• When do we need to adapt representations?

Test Tasks are Easy

Test Tasks are Hard

Prototypical Networks (ProtoNet)

Method

- « Nearest-centroid classification in learned embedding space. »
- Pseudo-code:
 - I. Embed all support sample x as $\phi(x)$.
 - 2. Compute mean embedding for each class.
 - 3. Classify query sample x^{\prime} as nearest centroid.

$$p(y = c_i \mid \mathbf{x} = x') = \operatorname{softmax}_{c_j}(\phi(x')^{\top}c_i))$$

where $c_i = \frac{1}{k} \sum_{x \in c_i} \phi(x)$

Extensions

MetaOptNet, SimpleShot, DeepEMD, Proto-NCA, ...

Contrasting ProtoNet and MAML

Transfer Algorithms

- Task-agnostic data representations.
- Example: ProtoNet.

Adaptation Algorithms

- Task-specific data representations.
- Example: MAML.

Transfer v.s. Adaptation

Empirical study

- Architecture: 4-layer CNN.
- Dataset: CIFAR-FS & mini-ImageNet.
- Metrics: accuracy & confidence intervals.

Results

- ProtoNet outperforms MAML.
- 2-9% absolute improvement seems significant.
- Why is transfer so effective?

	CIFAR-FS			
	5-ways 1-shot	5-ways 5-shots		
ProtoNet	57.9% ±0.8	76.7% ±0.6		
MAML	53.8 % ±1.8	67.6% ±1.0		
	mini-lmageNet			

	mini-imageinet				
	5-ways 1-shot	5-ways 5-shots			
ProtoNet	42.9% ±0.6	65.9% ±0.6			
MAML	40.9% ±1.5	58.9% ±0.9			

A few caveats in the comparisons

- Where did our train and test tasks come from?
 - Classes randomly assigned to train or test splits.
- Underlying assumptions?
 - No distribution shift between train and test classes.
 - Train and test classes **semantically** closely related.
- More thorough studies with alternative splits
 - Can we use semantic information?
 - Expensive → What if no semantics?
 - Can we train on dataset X and test on Y?
 - Is transfer easy or hard? How to tell?

Class Distributions

Train Classes
Test Classes

Automatic Taskset Generation (ATG)

Overview

- Embed classes with trained feature extractor.
- Cluster, subject to divergence constraint.
- Assign according to clusters' likelihood.

Automatic Taskset Generation (ATG)

Overview

- Embed classes with trained feature extractor.
- Cluster, subject to divergence constraint.
- Assign according to clusters' likelihood.

$$\max_{p_{\text{train}}, p_{\text{test}}} \sum_{i} \log(p_{\text{train}}(c_i) + p_{\text{test}}(c_i))$$
s.t.
$$D(p_{\text{train}}||p_{\text{test}}) = R$$

Automatic Taskset Generation (ATG)

Overview

- Embed classes with trained feature extractor.
- Cluster, subject to divergence constraint.
- Assign according to clusters' likelihood.

$$\max_{p_{ ext{train}}, p_{ ext{test}}} \sum_{i} \log(p_{ ext{train}}(c_i) + p_{ ext{test}}(c_i))$$
s.t. $D(p_{ ext{train}} || p_{ ext{test}}) = R$

Desiderata

- Automatic √
- No human knowledge √
- Control over train-test task difficulty √

Making train and test tasks more different

Setup

- Generate tasksets for various R.
- Measure classification accuracy.
 - Re-trained feature extractor $\phi(x)$.
 - ProtoNet (nearest centroid).

Results

- Train-to-test task difficulty increases.
- True across datasets.
 - Incl. EMNIST & Labelled Faces in the Wild (LFW10) with no semantics!

Making train and test tasks more different

Setup

- Generate tasksets for various R.
- Measure classification accuracy.
 - Re-trained feature extractor $\phi(x)$.
 - ProtoNet (nearest centroid).

Results

- Train-to-test task difficulty increases.
- True across datasets.
 - Incl. EMNIST & Labelled Faces in the Wild (LFW10) with no semantics!

Higher train accuracy Lower test accuracy

Making train and test tasks more different

Setup

- Generate tasksets for various R.
- Measure classification accuracy.
 - Re-trained feature extractor $\phi(x)$.
 - ProtoNet (nearest centroid).

Results

- Train-to-test task difficulty increases.
- True across datasets.
 - Incl. EMNIST & Labelled Faces in the Wild (LFW10) with no semantics!

Transfer v.s. Adaptation — Redux

Empirical study

- ProtoNet v.s. MAML, again.
- Hardest ATG splits for CIFAR-FS and mini-ImageNet.
 - $D(p_{\text{train}} \mid\mid p_{\text{test}}) = 0.96$

Results

- MAML outperforms ProtoNet by 2-5%.
- Opposite outcome of original tasksets.

Intuition

- Train = test: transfer is enough.
- Train **#** test: **adaptation** is required.

1	CIFAR-FS – Hard				
	5-ways 1-shot	5-ways 5-shots			
ProtoNet	35.6% ±0.2	50.5% ±0.3			
MAML	35.9% ±0.3	55.7% ±0.5			

	mini-ImageNet – Hard				
	5-ways 1-shot	5-ways 5-shots			
ProtoNet	41.8% ±0.6	60.4% ±0.4			
MAML	44.9% ±0.8	62.3% ±1.0			

Take-aways — Part I

QI: How to adapt fast?

Freeze task-agnostic parameters; learn optimization parameters.

Q2:When is adaptation required?

When the new tasks are different from train tasks.

Fast Adaptation without Meta-Learning

Part II

Fast Adaptation without Meta-Learning

Part II

Q3: How to adapt quickly with reinforcement learning?

Downsides of MAML

- Expensive pretraining: memory and compute.
- Incompatible with pretrained models.

Ideal scenario

- Download off-the-shelf pretrained model.
- Quickly solve new tasks as if trained with MAML.

Core question

How to quickly adapt pretrained representations?

MSE (Linear Model) None (1, 10) TBackward0

MseLossBackward0

MAML MSE
(Linear Model)

Case study: visual reinforcement learning

Visual RL

- Given visual observations, take actions that maximize rewards.
- Challenge: noisy learning signal.
- Testbed I: Habitat Al
 - Pretraining: classify ImageNet images.
 - Downstream: robot navigates from camera and GPS observations.

aihabitat.org

Habitat: A Platform for Embodied Al Research

facebook Artificial Intelligence

aihabitat.org

Habitat: A Platform for Embodied Al Research

facebook Artificial Intelligence

Running simple baselines

Downstream learning setup

- Policy and value heads learned on top of features.
- Features:

	De Novo	Frozen	Finetuned
Initialization	Random	Pretrained	Pretrained
Finetuned	√	X	√

Results

• Finetuned struggles to outperform Frozen.

A page from the MAML textbook

- Can we identify and freeze task-agnostic layers?
 - Yes, with a little expert data.
 - Idea: measure how well each layer can predict Q-values.

Frozen+Finetuned

- Initialization: pretrained
- Task-agnostic layers: frozen
- Task-specific layers: finetuned

Results

• Frozen+Finetuned significantly stabilizes finetuning.

A page from the MAML textbook

- Can we identify and freeze task-agnostic layers?
 - Yes, with a little expert data.
 - Idea: measure how well each layer can predict Q-values.
- Frozen+Finetuned
 - Initialization: pretrained
 - Task-agnostic layers: frozen
 - Task-specific layers: finetuned
- Results
 - Frozen+Finetuned significantly stabilizes finetuning.
- Can we improve further?

Fast-adaptation inductive biases for RL with MSR Jump

- Testbed 2: MSR Jump
 - Pretraining: white agent jumps over gray box (75 pretraining tasks).
 - Downstream: jump over unseen box positions (75 evaluation tasks).

Fast-adaptation inductive biases for RL with MSR Jump

- Testbed 2: MSR Jump
 - Pretraining: white agent jumps over gray box (75 pretraining tasks).
 - Downstream: jump over unseen box positions (75 evaluation tasks).

Fast-adaptation inductive biases for RL with MSR Jump

- Testbed 2: MSR Jump
 - Pretraining: white agent jumps over gray box (75 pretraining tasks).
 - Downstream: jump over unseen box positions (75 evaluation tasks).

A failure mode for transfer in RL

- Setup
 - Run our baselines on MSR Jump.
- Results
 - Frozen features underperform De Novo finetuning.
- What is wrong with Frozen features?

Are Frozen features informative enough?

Setup

- 1. Collect optimal trajectories.
- 2. Measure quality of Frozen / Finetuned features:
 - Regress optimal actions (Accuracy).
 - Regress distance to box (MSE).

Results

- Perfect action accuracy (100%).
- Perfect distance estimation (sub-pixel).
- Yes, pretrained features are informative enough.
 - What makes finetuned features so good?

Good features are robust to noise

Setup

- 1. Collect optimal trajectories.
- 2. Regress optimal actions from noisy features.
- 3. Measure classification error.
- 4. Repeat for a different noise level.

Results

- Adapted features degrade slower than pretrained ones.
- Idea I: enforce noise robustness while finetuning.

Good features ease decision making

Setup

- Collect optimal trajectories.
- Compute features for all observations.
- Measure cluster purity.
 - Given 5 nearest neighbors, how many induce the same optimal action?

Results

- Finetuned features yield purer clusters.
- Idea 2: ensure similar states lead to similar policies.

Policy-induced self-consistency objective (PiSCO)

Policy-induced self-supervision

$$\mathcal{L}^{ extsf{PiSCO}} = \mathop{\mathbb{E}}_{\substack{s \sim \mathcal{B} \ s_1, s_2 \sim \mathrm{T}(\cdot \mid s)}} \left[rac{1}{2} \left(\mathcal{D}(z_1, p_2) + \mathcal{D}(z_2, p_1)
ight)
ight]$$

where
$$\mathcal{D}(z,p) = \mathrm{KL}\left(\bot\left(\pi(\cdot\mid z)\right)\mid\mid \pi(\cdot\mid p)\right)$$

Recipe: PiSCO with SimSiam

- I. Sample state s from replay ${\cal B}$.
- 2. Augment s into s_1, s_2 .
- 3. Compute SimSiam objective with KL of induced policy (not L2-norm).

PiSCO accelerates RL finetuning

Frozen+PiSCO

- Initialization: pretrained.
- Task-agnostic layers: frozen.
- Task-specific layers: PiSCO.

Results

• PiSCO accelerates RL finetuning on Jump and Habitat.

PiSCO accelerates RL finetuning

Frozen+PiSCO

- Initialization: pretrained.
- Task-agnostic layers: frozen.
- Task-specific layers: PiSCO.

Results

PiSCO accelerates RL finetuning on Jump and Habitat.

Take-away

• Finetuning works better with RL-specific inductive biases.

Take-aways — Part II

QI: How to adapt fast?

Freeze task-agnostic parameters; learn optimization parameters.

Q2:When is adaptation required?

When the new tasks are different from train tasks.

Q3: How to adapt quickly with reinforcement learning?

Freeze task-agnostic parameters; finetune with a policy-induced objective.

Meta-Learning with Many Tasks

Part III

Q4: How to choose training tasks?

Change of assumptions

What if we get to pick which task to train on?

Motivation

- Streaming v.s. offline tasksets.
- Some tasks are more informative.
- « Does sampling even matter in few-shot learning? »

Core question

How to sample tasks for best test accuracy?

Sampling matters for episodic training

• Compare 5 candidate distributions on:

- 2 architectures: CNN4, ResNet12.
- 4 algorithms: MAML, ANIL, ProtoNet (Euclidean & Cosine).
- 2 datasets: mini-ImageNet, tiered-ImageNet.
- 2 settings: 5-ways I-shot & 5-shots.

Results

Uniform sampling dominates, Baseline second best.

Q5: How to optimize with many tasks?

Motivation

- mini-ImageNet → 10¹⁶² different tasks.
- Joint training over all tasks is intractable.
- Solution: sample tasks one at a time.
- Issue: the memoryless SGD
 - Immediately discards gradients after they are used
- Core question
 - How do we reuse information seen in previous tasks?

Q5: How to optimize with many tasks?

Motivation

- mini-ImageNet → 10¹⁶² different tasks.
- Joint training over all tasks is intractable.
- Solution: sample tasks one at a time.
- Issue: the memoryless SGD
 - Immediately discards gradients after they are used
- Core question
 - How do we reuse information seen in previous tasks?

IGT improves meta-learning

Setup

- MAML on mini-ImageNet, 5 adaptation steps.
- 5-ways 5-shots tasks.
- Only replace the task-level optimizer:
 - Fast adaptation with SGD.
 - Meta-learning with IGT.

Results

• IGT optimizers improve upon Heavyball and Adam.

Take-aways — Part III

QI: How to adapt fast?

Freeze task-agnostic parameters; learn optimization parameters.

Q2:When is adaptation required?

When the new tasks are different from train tasks.

Q3: How to adapt quickly with reinforcement learning?

Freeze task-agnostic parameters; finetune with a policy-induced objective.

Q4: How to choose training tasks?

Sample them uniformly over difficulty.

Q5: How to optimize with many tasks?

Retain the information from tasks prior tasks.

Papers in this thesis

- QI: « When MAML Can Adapt Fast and How to Assist When it Cannot » S. M. R. Arnold, S. Iqbal, and F. Sha. AISTATS, 2021.
- Q2: « Embedding Adaptation is Still Needed for Few-Shot Learning » S. M. R. Arnold and F. Sha. ArXiv Preprints, 2021.
- Q3: « Policy-Induced Self-Supervision Improves Representation Finetuning in Visual RL » S. M. R. Arnold and F. Sha. In Submission.
- Q4: « Uniform Sampling over Episode Difficulty »

 S. M. R. Arnold*, G. S. Dhillon*, A. Ravichandran, and S. Soatto. NeurlPS, 2021.
- Q5: « Reducing the Variance in Online Optimization by Transporting Past Gradients » S. M. R. Arnold, P-A. Manzagol, R. Babanezhad, I. Mitliagkas, N. Le Roux. NeurlPS, 2019.

Papers not in this thesis

- « Policy Learning and Evaluation with RQMC »
 - S. M. R. Arnold, P. L'Ecuyer, L. Chen, Y-F. Chen, and F. Sha. AISTATS, 2022.
 - Replaces Monte Carlo sampling with Randomized Quasi-Monte Carlo in RL.

- « Analyzing the Variance of Policy Gradient Estimators for the LQR »
 - J.A. Preiss*, S. M. R. Arnold*, C-Y. Wei*, and M. Kloft. NeurIPS 2019.
 - Derives bounds for the variance of REINFORCE on LQR.

- « learn2learn: A Library for Meta-Learning Research »
 - S. M. R. Arnold, P. Mahajan, D. Datta, I. Bunner, and K. S. Zarkias. ArXiv Preprints, 2020.
 - Software package, 27 contributors, 2.1k \star on GitHub.

Outlook

- A theory for meta-optimization
 - Scalable meta-optimizers.
 - Meta-overfitting, meta-augmentation, meta-bias, ...
 - Emergence of optimization parameters.
- Defining and measuring task similarity
 - Data, model, and learning algorithm \rightarrow establish guidelines for practitioners.
 - For RL tasks?
- Analyses grounded in real-world tasks
 - No real-world task today!

« Only experiments with **real Creatures** in **real worlds** can answer the natural doubts about our approach. » R. A. Brooks. Intelligence without representation. Al'91.